p-Index From 2021 - 2026
9.275
P-Index
This Author published in this journals
All Journal Techno.Com: Jurnal Teknologi Informasi Jurnal Buana Informatika Jurnal Informatika Jurnal Teknologi Informasi dan Ilmu Komputer JUITA : Jurnal Informatika Jurnas Nasional Teknologi dan Sistem Informasi POSITIF Edu Komputika Journal Sistemasi: Jurnal Sistem Informasi Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Computatio : Journal of Computer Science and Information Systems RABIT: Jurnal Teknologi dan Sistem Informasi Univrab Jurnal Khatulistiwa Informatika JIKO (Jurnal Informatika dan Komputer) JURNAL MEDIA INFORMATIKA BUDIDARMA Jurnal Pilar Nusa Mandiri JTERA (Jurnal Teknologi Rekayasa) Jurnal Sains dan Informatika INOVTEK Polbeng - Seri Informatika Matrix : Jurnal Manajemen Teknologi dan Informatika SINTECH (Science and Information Technology) Journal Jurnal Informatika Universitas Pamulang Jurnal Teknoinfo Jurnal Sisfokom (Sistem Informasi dan Komputer) KACANEGARA Jurnal Pengabdian pada Masyarakat MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer KOMPUTIKA - Jurnal Sistem Komputer KOMPUTA : Jurnal Ilmiah Komputer dan Informatika Jurnal Riset Informatika JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) Jurnal Teknologi Terapan Jurnal Teknologi Terpadu EDUMATIC: Jurnal Pendidikan Informatika EVOLUSI : Jurnal Sains dan Manajemen Building of Informatics, Technology and Science JASIEK (Jurnal Aplikasi Sains, Informasi, Elektronika dan Komputer) JISKa (Jurnal Informatika Sunan Kalijaga) Jurnal Teknologi Informasi dan Multimedia Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi) JUSTINDO (Jurnal Sistem dan Teknologi Informasi Indonesia) JISA (Jurnal Informatika dan Sains) International Journal of Engineering, Technology and Natural Sciences (IJETS) JOURNAL OF INFORMATION SYSTEM RESEARCH (JOSH) Jurnal Sistem Komputer dan Informatika (JSON) Idealis : Indonesia Journal Information System Jurnal Teknik Informatika (JUTIF) Jurnal Digit : Digital of Information Technology Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer) Science in Information Technology Letters Journal of Soft Computing Exploration Jurnal Indonesia : Manajemen Informatika dan Komunikasi Bulletin of Computer Science Research KLIK: Kajian Ilmiah Informatika dan Komputer International Journal Software Engineering and Computer Science (IJSECS) Jurnal Sains dan Teknologi International Journal Science and Technology (IJST) Malcom: Indonesian Journal of Machine Learning and Computer Science Journal of Scientific Research, Education, and Technology Journal of Data Science Theory and Application NERO (Networking Engineering Research Operation) SmartComp Jurnal Indonesia : Manajemen Informatika dan Komunikasi Emitor: Jurnal Teknik Elektro IJISCS (International Journal of Information System and Computer Science)
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Computatio : Journal of Computer Science and Information Systems

PENGENALAN CITRA RAMBU LALU LINTAS MENGGUNAKAN EKSTRAKSI FITUR MOMENWARNA DAN K-NEAREST NEIGHBOR Rusma Eko Fiddy Rizarta; Donny Avianto
Computatio : Journal of Computer Science and Information Systems Vol 3, No 1 (2019): COMPUTATIO : JOURNAL OF COMPUTER SCIENCE AND INFORMATION SYSTEMS
Publisher : Faculty of Information Technology, Universitas Tarumanagara

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1150.788 KB) | DOI: 10.24912/computatio.v3i1.4272

Abstract

The traffic signs are signs with specific shape and symbols, letters, numbers, or words which have the aim to warn or inform the road users. However, there are many road users who are not aware of the meaning of each signs. In this research, we develop an application which can classify a road sign image into three classes, priority four-way crossroad, do-not-park sign, and follow-this-road sign. Initially, the system will do preprocessing step such as grays calling, histogram equalization, and input image segmentation. Next, the feature extraction step will be conducted, namely the spatial moment feature extraction, normalized centering, and color statistics. Lastly, the feature representation from both extraction methods will be used to classify the image using K-nearest neighbor. Experiment result shows that the combination of both feature extraction methods gives promising result. From 21 training images and 15 testing images, the system can recognize the traffic signs with 100% accuracy with K=3, 86.6% with K=5, and 86.6% with K=7. Rambu lalu lintas merupakan salah satu alat perlengkapan jalan dalam bentuk tertentu yang memuat lambang, huruf, angka, kalimat yang digunakan untuk memberikan perintah, larangan, peringatan dan petunjuk bagi pengguna jalan agar tertib berlalu lintas. Namun, banyak di antara pengguna jalan yang belum mengetahui arti dari setiap rambu lalu lintas yang terpasang.Pada penelitian ini, dibuatlah suatu aplikasi yang mampu melakukan klasifikasi citra rambu ke dalam 3 kelas yaitu: peringatan simpang empat prioritas, larangan parkir dan perintah memasuki jalur atau lajur yang ditunjuk. Mula-mula sistem akan melakukan prapemrosesan seperti seperti: grayscalling, histogram equalization, dan segmentasi pada citra input. Selanjutnya, tahap ekstraksi ciri akan dilakukan pada citra hasil pra-pemrosesan. Adapun metode ekstraksi ciri yang digunakan pada penelitian kali ini adalah ekstraksi fitur momen spasial dan pusat ternormalisai (momen) dan ekstraksi fitur statistika warna (warna). Terakhir, nilai fitur yang dihasilkan oleh kedua metode tersebut akan diklasifikasi mengguakan K-Nearest Neighbor. Hasil uji coba menunjukkan bahwa metode ekstraksi fitur gabungan momen-warna memberikan hasil yang menjanjikan. Dari 21 citra latih dan 15 citra uji yang digunakan, sistem mampu mengenali rambu dengan tepat 100% pada K=3 , 86,6% pada K=5, dan 86,6% pada K=7. 
PENGENALAN CITRA RAMBU LALU LINTAS MENGGUNAKAN EKSTRAKSI FITUR MOMENWARNA DAN K-NEAREST NEIGHBOR Rizarta, Rusma Eko Fiddy; Avianto, Donny
Computatio : Journal of Computer Science and Information Systems Vol. 3 No. 1 (2019): COMPUTATIO : JOURNAL OF COMPUTER SCIENCE AND INFORMATION SYSTEMS
Publisher : Faculty of Information Technology, Universitas Tarumanagara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24912/computatio.v3i1.4272

Abstract

The traffic signs are signs with specific shape and symbols, letters, numbers, or words which have the aim to warn or inform the road users. However, there are many road users who are not aware of the meaning of each signs. In this research, we develop an application which can classify a road sign image into three classes, priority four-way crossroad, do-not-park sign, and follow-this-road sign. Initially, the system will do preprocessing step such as grays calling, histogram equalization, and input image segmentation. Next, the feature extraction step will be conducted, namely the spatial moment feature extraction, normalized centering, and color statistics. Lastly, the feature representation from both extraction methods will be used to classify the image using K-nearest neighbor. Experiment result shows that the combination of both feature extraction methods gives promising result. From 21 training images and 15 testing images, the system can recognize the traffic signs with 100% accuracy with K=3, 86.6% with K=5, and 86.6% with K=7. Rambu lalu lintas merupakan salah satu alat perlengkapan jalan dalam bentuk tertentu yang memuat lambang, huruf, angka, kalimat yang digunakan untuk memberikan perintah, larangan, peringatan dan petunjuk bagi pengguna jalan agar tertib berlalu lintas. Namun, banyak di antara pengguna jalan yang belum mengetahui arti dari setiap rambu lalu lintas yang terpasang.Pada penelitian ini, dibuatlah suatu aplikasi yang mampu melakukan klasifikasi citra rambu ke dalam 3 kelas yaitu: peringatan simpang empat prioritas, larangan parkir dan perintah memasuki jalur atau lajur yang ditunjuk. Mula-mula sistem akan melakukan prapemrosesan seperti seperti: grayscalling, histogram equalization, dan segmentasi pada citra input. Selanjutnya, tahap ekstraksi ciri akan dilakukan pada citra hasil pra-pemrosesan. Adapun metode ekstraksi ciri yang digunakan pada penelitian kali ini adalah ekstraksi fitur momen spasial dan pusat ternormalisai (momen) dan ekstraksi fitur statistika warna (warna). Terakhir, nilai fitur yang dihasilkan oleh kedua metode tersebut akan diklasifikasi mengguakan K-Nearest Neighbor. Hasil uji coba menunjukkan bahwa metode ekstraksi fitur gabungan momen-warna memberikan hasil yang menjanjikan. Dari 21 citra latih dan 15 citra uji yang digunakan, sistem mampu mengenali rambu dengan tepat 100% pada K=3 , 86,6% pada K=5, dan 86,6% pada K=7. 
Co-Authors Adhitama, Satriya Adicahya, Bina Sukma Adityo Permana Wibowo Alfin Syarifuddin Syahab Alwani, Adie G. Amalia Rizki Wulandari Apriansyah, Ferryma Arba Ardiansyah, Diky Aribowo Aribowo Arief Hermawan Arieska Restu Harpian Dwika Arif Hermawan, Arif Ashari, Nadia Aziz Perdana Baiq Nurul Azmi Bowo Hirwono Budiyanto, Irfan Dewi, Amelia Citra Dian Wijayanti Dimas Dwi Kurniawan Dwi Ratnawati, Dwi Edi Priyanto Enggar Novianto Enggar Novianto Erfin Nur Rohma Khakim Fadhila, Arifa Farras Fadilah, Faiz Fahri Putra Herlambang Fakharudin, Panji Rangga Adzan Fajar Faqih, Allan Bil Febiansyah Annaufal Ahnaf Fauzi Ferdinandus Edwin Penalun Gumilang, Muhammad Satrio Gunawan, Asrul Hanif, Rifqi Fadhlurrahman Hardiyantari, Oktavia Herdy Andriksen Ilmy Eka Handayani Imantoko Imantoko Indra Maulana Iqbal, Muhammad Izza Jagad Raya Ramadhan Kusban, Muhammad Kusumastuti, Asriana Dyah Maulana, Adha Muh Arifandi Muhammad Irsyad Indra Fata Muhammad Rizki Muhammad Rizki Muhammad Rizki Nasmah Nur Amiroh Nazar Iqbal Bimantoro Novaldy, Olwin Kirab Nur Widiastuti Nurazila, Siti Octavianus, Yonathan Perdana, Aziz Purba, Yurjaa Ghoniyyan Purnomo Pratama, Rizki Putra, Kristianto Pratama Dessan Reski Noviana Rian Oktafiani Rian Oktafiani Rianto Rianto Rizarta, Rusma Eko Fiddy Rizky Samudra Falasyfa Roy Fasti Rubangi Rubangi Rudi, Rudiono Rusma Eko Fiddy Rizarta Saputra, Candra Heru Setiawan, Muhhamad Ajun Siti Rokhanah Soraya Fatmawati Sri Wulandari SRI WULANDARI Sutarman Sutarman Syafrudin, Teguh Syahab, Alfin Syarifuddin Teguh Syafrudin Tri Untoro, Iwan Hartadi Tri Widodo Vivianti Wahid, Ach. Nur Aqil Widyastuti, Evi