Claim Missing Document
Check
Articles

Found 35 Documents
Search

Modifikasi Fonem Vokal Pada Stemming Kata Tidak Baku Iskandar, Ahmad Fikri; Utami, Ema; Hidayat, Wahyu; Budi, Agung Prasetio; Hartanto, Anggit Dwi
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 10 No 1: Februari 2023
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2023105028

Abstract

Bahasa Indonesia termasuk bahasa yang paling populer digunakan di dunia. Bahasa Indonesia dapat berupa bahasa baku dan tidak baku. Bahasa tidak baku dapat dikarenakan oleh penyerapan dari bahasa asing atau bahasa daerah. Penyerapan ini dapat terjadi perganti huruf vokal. Kontribusi pada penelitian ini adalah melakukan modifikasi fonem pada huruf vokal untuk mengembalikan kata tidak baku ke dalam bentuk kata dasar yang baku disebut sebagai Modified Vocal Phonemes Non Formal. Percobaan dilakukan dengan 60 kata tidak baku yang sudah dilakukan preprocessing pada penelitian sebelumnya terlebih dahulu. Penelitian ini membandingkan hasil algoritma dengan algoritma pada penelitian sebelumnya. Algoritma Modified Vocal Phonemes Non Formal telah berhasil melakukan stemming dengan presisi 90.00% dengan 54 kata tidak baku yang sukses dikonversi ke kata dasar sesuai dengan Kamus Besar Bahasa Indonesia (KBBI) dan 6 kata masih belum berhasil dikonversi. AbstractIndonesian is one of the most popular languages spoken in the world. Indonesian can be standard and non-standard language. Non-standard language can be caused by absorption of foreign languages or village languages. This absorption can occur as a substitute for vowels. The contribution to this research is to modify the phonemes of vowels to return non-formal words into formal root forms known as Modified Vocal Phonemes in Non-Formal. The experiment was carried out with 60 non-formal words that have been preprocessed in the previous research. This research will compare the results of the algorithm with the algorithm in previous research. Algorithm Modified Vocal Phenomes Non-Formal has succeeded in performing stemming with 90.0% precision with 54 words that were successfully converted to base words according to the Big Indonesian Dictionary and 6 words were still not converted.
Studi Literatur Mengenai Klasifikasi Citra Kucing Dengan Menggunakan Deep Learning: Convolutional Neural Network (CNN) Linda, Kumara Dewi; Kusrini, Kusrini; Hartanto, Anggit Dwi
Journal of Electrical Engineering and Computer (JEECOM) Vol 6, No 1 (2024)
Publisher : Universitas Nurul Jadid

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33650/jeecom.v6i1.7480

Abstract

Deep learning merupakan bagian dari machine learning yang memiliki kemampuan untuk mengenali pola gambar, suara, teks dan data lainnya yang kompleks sehingga dapat menghasilkan prediksi yang akurat. Salah satu kemampuan deep learning adalah klasifikasi citra pada objek. CNN adalah salah satu metode dalam machine learning yang digunakan untuk mengklasifikasikan citra objek. Algoritma Convolutional Neural Network (CNN) adalah bagian dari deep learning network yaitu jenis jaringan saraf tiruan yang saat ini banyak digunakan untuk pengenalan suatu citra. Dalam penelitian ini, algoritma yang digunakan adalah CNN karena akurasinya yang cukup baik. Deep learning dengan convolutional neural network (CNN) yang banyak digunakan untuk melakukan deteksi, klasifikasi, dan prediksi pada gambar. Citra objek dalam penelitian ini adalah kucing yang terdiri dari berbagai macam jenis. Tujuan dari penelitian ini adalah untuk mengklasifikasikan citra kucing sesuai dengan jenisnya. Jurnal ini merupakan tinjauan literatur untuk menambah pengetahuan berharga mengenai penelitian terbaru tentang klasifikasi citra kucing menggunakan CNN. Jurnal ini membahas studi literatur tentang variabel input, metode yang digunakan dan hasil literatur dari penelitian sebelumnya. Metode yang paling banyak digunakan pada penelitian sebelumnya adalah CNN
COMPARISON OF ACCURACY LEVELS OF RANDOM FOREST AND K-NEAREST NEIGHBOR (KNN) ALGORITHMS FOR CLASSIFYING SMOOTH BANK CREDIT PAYMENTS Aji Santoso, Bayu; Kusrini, Kusrini; Hartanto, Anggit Dwi
Jurnal Teknik Informatika (Jutif) Vol. 5 No. 1 (2024): JUTIF Volume 5, Number 1, February 2024
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2024.5.1.1195

Abstract

Providing credit is one of the bank offers offered to customers, but extending credit to customers who are not appropriate can cause problems such as customers who do not pay installments on time and even delay payment of installments for several months until bad credit occurs so that this can be detrimental to the bank. Therefore, in this study a comparative method will be carried out to find out which method is the best in classifying the smoothness of bank credit payments. It is hoped that the results of the research can be used as material for consideration by the bank in the selection of bank credit customers. In this study using a dataset from the UCI Machine Learning Repository, the credit payment data totaled 29,998. The dataset is split by dividing 70% train data and 30% test data with the amount of each data, namely 24000 train data and 6000 test data. Meanwhile, the labels used are Eligible and Ineligible. In this study, implementing the data mining process using the CRISP-DM framework and using the Python programming language. From the results of the evaluation using the confusion matrix, the best accuracy value was obtained for the random forest algorithm, namely 82.22%, precision of 80.44%, recall of 82.22% and f1-score of 80.0%. Meanwhile, the KNN algorithm obtains an accuracy value of 81.55%, a precision of 79.5%, a recall of 81.55% and an f1-score of 79.11%. Based on the results of this evaluation, the Random Forest algorithm has the best accuracy compared to the KNN algorithm in classifying bank credit payments.
Comparative Performance of SVM and Multinomial Naïve Bayes in Sentiment Analysis of the Film 'Dirty Vote' Iedwan, Aisha Shakila; Mauliza, Nia; Pristyanto, Yoga; Hartanto, Anggit Dwi; Rohman, Arif Nur
Scientific Journal of Informatics Vol. 11 No. 3: August 2024
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v11i3.10290

Abstract

Purpose: The purpose of this research is to analyze and compare the performance of two machine learning models, Support Vector Machine (SVM) and Multinomial Naive Bayes, in conducting sentiment analysis on YouTube comments related to the film "Dirty Vote." Methods: The study involved collecting YouTube comments and preprocessing the data through cleaning, labeling, and feature extraction using TF-IDF. The dataset was then divided into training and testing sets in an 80:20 ratio. Both the SVM and Multinomial Naive Bayes models were trained and tested, with their performance evaluated using accuracy, precision, recall, and F1-score metrics. Result: The results revealed that both models performed well in classifying sentiments, with SVM slightly outperforming Multinomial Naive Bayes in terms of accuracy and precision. Particularly, SVM showed superior performance in detecting positive comments, making it a more reliable model for this specific sentiment analysis task. Novelty: This study contributes to the field of sentiment analysis by providing a detailed comparative analysis of SVM and Multinomial Naive Bayes models on YouTube comments in the context of an Indonesian film. The findings highlight the strengths and weaknesses of each model, offering insights into their applicability for sentiment analysis tasks, particularly in analyzing social media content. This research also suggests potential future directions, including the exploration of advanced NLP techniques and different models to enhance sentiment analysis performance.
Analisis Perbandingan Algoritma SVM, Random Forest dan Logistic Regression untuk Prediksi Stunting Balita Febriyanti, Nada Rizki; Kusrini, Kusrini; Hartanto, Anggit Dwi
Jurnal Pendidikan Informatika (EDUMATIC) Vol 9 No 1 (2025): Edumatic: Jurnal Pendidikan Informatika
Publisher : Universitas Hamzanwadi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29408/edumatic.v9i1.29407

Abstract

The prevalence of stunting in Banjarmasin City in 2023 reached 26.5%, exceeding the WHO target (below 20%). Stunting impacts physical growth, cognitive development, and long-term economic productivity. The purpose of this study is to compare the performance of SVM, random forest, and logistic regression algorithms in classifying the stunting status of toddlers. The approach we use is comparative quantitative with machine learning methods for health data classification. Data totaling 2,231 under-five records were obtained from the Banjarmasin City Health Office. We used age, weight, height, and z-score information. Data preprocessing includes handling missing values, categorical data transformation, numerical data standardization, and feature selection. The dataset was divided into 70:30 and 80:20 ratios using stratified sampling with 5-fold cross-validation. Our results show that SVM is the best model, with accuracy 92%, precision 91%, recall 99%, F1-score 95%, and AUC 99%, followed by random forest (accuracy 91%, AUC 98%) and logistic regression (accuracy 92%, AUC 97%). SVM showed superior performance due to its ability to find the optimal hyperplane that maximally separates stunted and non-stunted classes, as well as its effectiveness in handling non-linear data through kernel tricks. SVM's good generalization ability on new data makes it a top choice as a predictive tool for stunting prevention in Banjarmasin City.