Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : JOIV : International Journal on Informatics Visualization

Analysis of Pneumonia on Chest X-Ray Images Using Convolutional Neural Network Model iResNet-RS Didih Rizki Chandranegara; Vizza Dwi Vitanti; Wildan Suharso; Hardianto Wibowo; Sofyan Arifianto
JOIV : International Journal on Informatics Visualization Vol 8, No 1 (2024)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.1.1728

Abstract

Pneumonia, a prevalent inflammatory condition affecting lung tissue, poses a significant health threat across all age groups and remains a leading cause of infectious mortality among children worldwide. Early diagnosis is critical in preventing severe complications and potential fatality. Chest X-rays are a valuable diagnostic tool for pneumonia; however, their interpretation can be challenging due to unclear images, overlapping diagnoses, and various abnormalities. Consequently, expedient, and accurate analysis of medical images using computer-aided methods has become crucial. This research proposes a Convolutional Neural Network (CNN) model, specifically the ResNet-RS Model, to automate pneumonia identification. The Contrast Limited Adaptive Histogram Equalization (CLAHE) technique enhances image contrast and highlights abnormalities in pneumonia images. Additionally, data augmentation techniques are applied to expand the image dataset while preserving the intrinsic characteristics of the original images. The proposed methodology is evaluated through three testing scenarios, employing chest X-ray images and pneumonia dataset. The third testing scenario, which incorporates the ResNet-RS model, CLAHE preprocessing, and data augmentation, achieves superior performance among these scenarios. The results show an accuracy of 92% and a training loss of 0.0526. Moreover, this approach effectively mitigates overfitting, a common challenge in deep learning models. By leveraging the power of the ResNet-RS model, along with CLAHE preprocessing and data augmentation techniques, this research demonstrates a promising methodology for accurately detecting pneumonia in chest X-ray images. Such advancements contribute to the early diagnosis and timely treatment of pneumonia, ultimately improving patient outcomes and reducing mortality rates.
Classification of Skin Cancer Images Using Convolutional Neural Network with ResNet50 Pre-trained Model Minarno, Agus Eko; Lusianti, Aaliyah; Azhar, Yufis; Wibowo, Hardianto
JOIV : International Journal on Informatics Visualization Vol 8, No 4 (2024)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.4.2156

Abstract

The skin, an astonishingly expansive organ within the human body, plays a pivotal role in safeguarding us against the environment's harsh elements. It acts as a formidable barrier, shielding our delicate internal systems from the scorching heat of the sun and the harmful effects of relentless exposure to light. Nevertheless, it is not impervious to damage, especially when subjected to excessive sunlight and the potentially hazardous ultraviolet (UV) radiation that accompanies it. Prolonged UV exposure can wreak havoc on our skin cells, potentially setting the stage for the development of skin cancer. This condition demands prompt and accurate diagnosis for effective treatment. To address the pressing need for swift and precise skin cancer diagnosis, cutting-edge technology has come to the fore in the form of deep learning systems. These sophisticated systems have been meticulously designed and trained to classify skin lesions autonomously with remarkable accuracy. The Convolutional Neural Network (CNN) architecture is a formidable choice for handling image classification tasks among the array of deep learning techniques. In a recent breakthrough study, a CNN-based model was meticulously constructed to explicitly classify skin lesions, leveraging the power of a pre-trained ResNet50 architectural model to augment its capabilities. This groundbreaking ResNet50 architecture was meticulously trained to classify seven distinct skin lesions, surpassing the performance of its predecessor, MobileNet. The results achieved in this endeavor are nothing short of impressive. The overall accuracy of the ResNet50 model stands at a commendable 87.42% when tasked with classifying the seven diverse classes within the dataset. Delving further into its proficiency, we find that the Top2 and Top3 accuracy rates soar to an astounding 95.52% and 97.86%, respectively, illustrating the model's exceptional precision and reliability.