Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Bulletin of Electrical Engineering and Informatics

3D Reconstruction using convolution smooth method Sofyan Arifianto; Hardianto Wibowo; Wildan Suharso; Raditya Novidianto; Dani Harmanto
Bulletin of Electrical Engineering and Informatics Vol 10, No 3: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v10i3.1991

Abstract

3D imagery is an image with depth data. The use of depth information in 3D images still has many drawbacks, especially in the image results. Raw data on the 3D camera even does not look smooth, and there is too much noise. Noise in the 3D image is in the form of imprecise data, which results in a rough image. This research will use the convolution smooth methods to improve the 3D image. Will smooth noise in the 3D image, so the resulting image will be better. This smoothing system is called the blurring effect. This research has been tested on flat objects and objects with a circle contour. The test results on the flat surface obtained a distance of 1.3177, the test in the object with a flat surface obtained a distance of 0.4937, and the test in circle contour obtained a distance of 0.3986. This research found that the 3D image will be better after applying the convolution smooth method.
Classification of batik patterns using K-Nearest neighbor and support vector machine Agus Eko Minarno; Fauzi Dwi Setiawan Sumadi; Hardianto Wibowo; Yuda Munarko
Bulletin of Electrical Engineering and Informatics Vol 9, No 3: June 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (664.555 KB) | DOI: 10.11591/eei.v9i3.1971

Abstract

This study is proposed to compare which are the better method to classify Batik image between K-Nearest neighbor and support vector machine using minimum features of GLCM. The proposed steps are started by converting image to grayscale and extracting colour feature using four features of GLCM. The features include energy, entropy, contras, correlation and 0o, 45o, 90o, and 135o. The classifier features consist of 16 features in total. In the experimental result, there exist comparison of previous works regarding the classification KNN and SVM using multi texton histogram (MTH). The experiments are carried out in the form of calculation of accuracy with data sharing and cross-validation scenario. From the test results, the average accuracy for KNN is 78.3% and 92.3% for SVM in the cross-validation scenario. The scenario for the highest accuracy of data sharing is at 70% for KNN and at 100% for SVM. Thus, it is apparent that the application of the GLCM and SVM method for extracting and classifying batik motifs has been effective and better than previous work.