Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Limits: Journal of Mathematics and Its Applications

Bifurkasi Periode Ganda dan Neimark-Sacker pada Model Diskret Leslie-Gower dengan Fungsi Respon Ratio-Dependent Reza Mokodompit; Nurwan Nurwan; Emli Rahmi
Limits: Journal of Mathematics and Its Applications Vol 17, No 1 (2020)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/limits.v17i1.6809

Abstract

Dinamika model Leslie-Gower dengan fungsi respon ratio-dependent yang didiskretisasi menggunakan skema Euler maju adalah fokus utama pada artikel ini. Analisis diawali dengan mengidentifikasi eksistensi dari titik ekuilibrium dan kestabilan lokalnya. Diperoleh empat titik ekuilibrium yaitu titik kepunahan kedua populasi dan titik kepunahan predator yang selalu tidak stabil, dan titik kepunahan prey dan eksistensi kedua populasi yang stabil kondisional. Selanjutnya dipelajari eksistensi dari bifurkasi periode ganda dan Neimark-Sacker di sekitar titik eksistensi kedua populasi sebagai akibat perubahan parameter h (time-step). Dari hasil analisis ditemukan bahwa bifurkasi periode ganda terjadi setelah melewati h=h_a atau h=h_c dan bifurkasi Neimark-Sacker terjadi setelah melewati h=hb. Di akhir pembahasan, diberikan simulasi numerik yang mendukung hasil analisis sebelumnya.
Sifat Fundamental Pada Granum Eulerian Suaib A Siraj; Asriadi Asriadi; Djihad Wungguli; Hasan S. Panigoro; Nurwan Nurwan; Nisky Imansyah Yahya
Limits: Journal of Mathematics and Its Applications Vol 21, No 2 (2024)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/limits.v21i2.20164

Abstract

Mathematical analysis has several important connections with graph theory. Although initially, they may seem like two separate branches of mathematics, there are relationship between them in several aspects, such as graphs as mathematical objects that can be analyzed using concepts from analytic mathematics. In graph theory, one often studies distance, connectivity, and paths within a graph. These can be further analyzed using analytic mathematics, such as in the structure of natural numbers. Literature studies on graph theory, especially Eulerian graphs, are interesting to explore. An Eulerian path in a graph G is a path that includes every edge of graph G exactly once. An Eulerian path is called closed if it starts and ends at the same vertex. The concept of granum theory as a generalization of undirected graphs on number structures provides a rigorous approach to graph theory and demonstrates some fundamental properties of undirected graph generalization. The focus of this study is to introduce the connectivity properties of Eulerian granum. The granum G(e,M) is called connected if for every u,v ∈ M with u ≠ v there exists a path subgranumG^' (e,M^' )⊆ G(e,M)  where u,v ∈ M^' and is called an Eulerian granum if there exists a surjective mapping ϕ∶ [∥E(G(e,M))∥ + 1]→ M such that e(ϕ(n),ϕ(n+1))=1 for every n ∈ [‖E(G(e,M))‖]. This property provides a deeper understanding of the structure and characteristics of Eulerian granum, which have not been fully comprehended until now.