Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Bulletin of Electrical Engineering and Informatics

Comparative analysis of word embedding features to improve the performance of deep learning models on social media data Jasmir, Jasmir; Alam Jusia, Pareza; Arvita, Yulia; Gunardi, Gunardi
Bulletin of Electrical Engineering and Informatics Vol 14, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i4.9200

Abstract

In this study, we apply various deep learning methods incorporating word embedding features to evaluate their impact on improving classification performance in sentiment analysis. The methods employed include conditional random field (CRF), bidirectional long short term memory (BLSTM), and convolutional neural network (CNN). Our experiments utilize social media data from restaurant review. By testing different iterations of these deep learning techniques with various word embedding features, we found that the BLSTM algorithm achieved the highest accuracy of 80.00% before integrating word embedding features. After incorporating word embeddings, the BLSTM with the word2vec feature achieved an accuracy of 87.00%. Notably, the CNN showed a significant improvement with the FastText feature. Considering all evaluation metrics—accuracy, precision, recall, and F1-score—the BLSTM algorithm consistently demonstrated the best performance across different word embeddings.