Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Jurnal CoreIT

Comparison Of The Performance Of C4.5 And Naive Bayes Algorithms For Student Graduation Prediction baskoro, baskoro; Triraharjo, Bambang; Wibowo, Adi
Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi Vol 9, No 2 (2023): December 2023
Publisher : Fakultas Sains dan Teknologi, Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/coreit.v9i2.24931

Abstract

Along with the development of technology, especially the development of increasingly large data storage. One organization that has large data storage is an educational organization. Educational organizations use data to obtain information, especially information about students. Student data has many attributes so that we can make predictions such as predictions of student performance, predictions of scholarship recipients and predictions of student graduation. Data mining methods in education are classified into five dimensions, one of which is prediction, such as predicting output values based on input data. From the results of the research conducted from the initial stage to the testing stage of the application of the C4.5 Algorithm, the accuracy results are higher than Naïve Bayes because in its classification stage, C4.5 processes attribute data one by one. The difference is with naïve Bayes which is influenced by the amount of data used, the comparison of the amount of training and testing data. The feasibility of the model obtained is supported by the high accuracy, precision, recall and AUC obtained from the two algorithms that have been tested. The C4.5 algorithm has an accuracy rate of 79.91%, 89.06% precision and 81.38% recall and an AUC value of 0.823. Meanwhile, Naïve Bayes has an accuracy rate of 76.95%, precision of 75.95% and recall of 98.38% and an AUC value of 0.838.Keywords: Graduation, Prediction, Data Mining, C4.5, Naïve Bayes
Comparison Of The Performance Of K-Nearest Neighbors And Naive Bayes Algorithms For Stroke Disease Prediction baskoro, baskoro; Novianto, Roby; Triraharjo, Bambang
Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi Vol 11, No 2 (2025): December 2025
Publisher : Fakultas Sains dan Teknologi, Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/coreit.v11i2.37542

Abstract

Purpose: Stroke is a critical global health issue requiring early and accurate prediction to mitigate severe outcomes. This study aims to compare the performance of the K-Nearest Neighbors (KNN) and Naive Bayes algorithms in predicting stroke disease, addressing the challenge of imbalanced datasets and improving prediction accuracy for better clinical decision-making.Methods/Study design/approach: The research followed the CRISP-DM model, utilizing a dataset of 5,110 patient records with 12 attributes from Kaggle. Data preprocessing included handling missing values and normalization. The KNN and Naive Bayes algorithms were implemented using RapidMiner, with performance evaluated through cross-validation, confusion matrices, and ROC-AUC curves.Result/Findings: The KNN algorithm achieved an accuracy of 94.50%, but exhibited low precision (7.89%) and recall (1.20%) for stroke-positive cases due to dataset imbalance. Naive Bayes yielded an accuracy of 88.83% with an AUC of 0.767, demonstrating better probability modeling but similar challenges in minority class detection. Both algorithms highlighted the impact of data imbalance on predictive performance.Novelty/Originality/Value: This study provides a comparative analysis of KNN and Naive Bayes for stroke prediction, emphasizing the need for data balancing and optimization techniques. The findings underscore the potential of these algorithms in healthcare applications while suggesting future improvements through ensemble methods or alternative algorithms like Random Forest.