Claim Missing Document
Check
Articles

Found 13 Documents
Search

Segmentasi persepsi dampak media sosial pada UMKM menggunakan K-Means Putri, Mayang Anglingsari; Trihapningsari, Denisha; Basri, Hasan; Junianto, Mochamad Bagoes Satria; Kusyadi, Irpan
Jurnal Ilmiah Teknologi Informasi Asia Vol 19 No 2 (2025): Volume 19 nomor 2 2025 (8)
Publisher : LP2M Institut Teknologi dan Bisnis ASIA Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32815/jitika.v19i2.1188

Abstract

The rapid growth of social media usage has significantly influenced the marketing and development strategies of Micro, Small, and Medium Enterprises (MSMEs). However, there remains a limited understanding of how various users perceive the role of social media in supporting MSME growth. This study aims to segment user perceptions regarding the impact of social media on MSMEs, utilizing the K-Means Clustering method. The research novelty lies in combining perceptual analysis with an unsupervised machine learning technique to discover hidden patterns in public responses. Data were collected through a questionnaire distributed to MSME actors and users of MSME products across Indonesia. The questionnaire includes statements related to the accessibility, promotional effectiveness, and trust-building capability of social media. The clustering results categorize respondents into several perception groups—ranging from highly positive to neutral or skeptical, providing valuable insights for stakeholders and digital marketing strategists in targeting communication and support for MSMEs. This approach offers a data-driven strategy to optimize MSME empowerment through the appropriate use of digital platforms.
Digitalisasi Manajemen Data IKU 3 dan IKU 4 Pada Program Studi Sistem Informasi Universitas Terbuka Menggunakan Metode Agile Irpan Kusyadi; Mochamad Bagoes Satria J; Dwi Astuti Aprijani; Mayang Anglingsari Putri
Petik: Jurnal Pendidikan Teknologi Informasi Dan Komunikasi Vol. 11 No. 2 (2025): Volume 11 No 2 September 2025
Publisher : Pendidikan Teknologi Informasi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31980/petik.v11i2.3301

Abstract

Abstrak Pengukuran kinerja Perguruan Tinggi Negeri (PTN) di Indonesia saat ini mengacu pada delapan Indikator Kinerja Utama (IKU). IKU berfungsi sebagai alat ukur pencapaian yang memengaruhi pemberian insentif berbasis kinerja seperti insentif capaian IKU, dana penyeimbang, dan program kompetisi. Program Studi Sistem Informasi Universitas Terbuka menghadapi tantangan dalam pengelolaan data terkait IKU 3 (dosen berkegiatan di luar kampus) dan IKU 4 (praktisi mengajar di dalam kampus). Penelitian ini bertujuan untuk mengembangkan sistem informasi manajemen data IKU 3 dan IKU 4 pada program studi sistem informasi Universitas Terbuka. Metode yang digunakan dalam pengembangan sistem ini yaitu metode Agile. Untuk mengumpulkan data dalam penelitian ini menggunakan metode wawancara, observasi dan menganalisis dari dokumentasi yang ada. Hasil penelitian ini menunjukan bahwa sistem informasi yang dikembahkan dapat memudahkan dalam pendokumentasian kegiatan yang berhubungan dengan IKU 3 dan IKU 4, mulai dari input kegiatan yang dilakukan sampai kepada penyajian laporan yang dapat dilakukan sesuai dengan template yang telah ditentukan. Pengujian sistem ini dilakukan dengan menggunakan metode black box testing yang menunjukan sistem berjalan dengan baik sesuai dengan fungsinya. Hasil penelitian ini menunjukkan bahwa sistem informasi yang dikembangkan dapat mempermudah pendokumentasian dan pelaporan IKU 3 dan IKU 4, serta telah berfungsi dengan baik berdasarkan pengujian black box. Kata Kunci: Digitalitasi data; Indikator Kinerja Utama (IKU); Metode Agile; Sistem Informasi Manajemen   Abstract The performance measurement of State Universities (PTN) in Indonesia currently refers to eight Key Performance Indicators (KPI). KPI serves as a measurement tool for achievement that influences the provision of performance-based incentives such as KPI achievement incentives, balancing funds, and competition programs. The Information Systems Study Program of Universitas Terbuka faces challenges in managing data related to KPI 3 (lecturers engaged in activities outside the campus) and KPI 4 (teaching practitioners on campus). This study aims to develop a data management information system for KPI 3 and KPI 4 in the Information Systems Study Program of Universitas Terbuka. The method used in developing this system is the Agile method. To collect data in this study, interviews, observations, and analysis of existing documentation were used. The results of this study indicate that the developed information system can facilitate the documentation of activities related to KPI 3 and KPI 4, starting from inputting activities carried out to presenting reports that can be done according to a predetermined template. Testing of this system was carried out using the black box testing method which showed that the system runs well according to its function. The results of this study indicate that the information system developed can facilitate the documentation and reporting of IKU 3 and IKU 4, and has functioned well based on black box testing. Keyword: Data digitization; Key Performance Indicators (KPI); Agile Methods; Management Information Systems
Comparison Various Analytical Approaches to Find The Most Efficient and Effective Method for Peak Hour Identification Hapsani, Anggi Gustiningsih; Putri, Mayang Anglingsari
MATICS: Jurnal Ilmu Komputer dan Teknologi Informasi (Journal of Computer Science and Information Technology) Vol 17, No 2 (2025): MATICS
Publisher : Department of Informatics Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/mat.v17i2.29193

Abstract

The Peak hour sales identification is essential to manage staff, inventory, and service capacity in coffee shop operations. This study compares an exploratory heatmap with two forecasting models, linear regression and Seasonal ARIMA (SARIMA) using six months of hourly transaction data from a coffee shop (1 March–17 August 2024) . The heatmap offers rapid visual recognition of high traffic periods but provides no predictive capability. For prediction, this study trained a linear regression and a SARIMA specification tuned by standard diagnostics; model performance was assessed on a held out set using MAE, RMSE, and MAPE. Linear regression yielded RMSE = 6.68, MAE = 5.40, and MAPE = 138.06%, indicating inadequate fit for intraday demand dynamics. In contrast, SARIMA achieved RMSE = 0.828, MAE = 0.557, and MAPE = 40.34%, substantially reducing error by explicitly modeling autocorrelation and recurrent seasonal cycles. The results show that seasonality aware time series modeling delivers actionable, interpretable forecasts for near term operational planning (such as staffing and product preparation). Overall, the proposed pipeline, heatmap for rapid situational awareness plus SARIMA for prediction, constitutes a practical baseline for peak hour identification in small scale retail.