Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : TELKOMNIKA (Telecommunication Computing Electronics and Control)

Construction of fuzzy radial basis function neural network model for diagnosing prostate cancer Agus Maman Abadi; Dhoriva Urwatul Wutsqa; Nurlia Ningsih
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 4: August 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i4.20398

Abstract

In this paper, we propose a construction of fuzzy radial basis function neural network model for diagnosing prostate cancer. A fuzzy radial basis function neural network (fuzzy RBFNN) is a hybrid model of logical fuzzy and neural network. The fuzzy membership function of the fuzzy RBFNN model input is developed using the triangle function. The fuzzy C-means method is applied to estimate the center and the width parameters of the radial basis function. The weight estimation is performed by various ways to gain the most accurate model. A singular value decomposition (SVD) is exploited to address this process. As a comparison, we perform other ways including back propagation and global ridge regression. The study also promotes image preprocessing using high frequency emphasis filter (HFEF) and histogram equalization (HE) to enhance the quality of the prostate radiograph. The features of the textural image are extracted using the gray level co-occurrence matrix (GLCM) and gray level run length matrix (GLRLM). The experiment results of fuzzy RBFNN are compared to those of RBFNN model. Generally, the performances of fuzzy RBFNN surpass the RBFNN in all accuracy calculation. In addition, the fuzzy RBFNN-SVD demonstrates the most accurate model for prostate cancer diagnosis.
Classification of heart disease based on PCG signal using CNN Aditya Wisnugraha Sugiyarto; Agus Maman Abadi; Sumarna Sumarna
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 5: October 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i5.20486

Abstract

Cardiovascular disease is the leading cause of death in the world, so early detection of heart conditions is very important. Detection related to cardiovascular disease can be conducted through the detection of heart signals interference, one of which is called phonocardiography. This study aims to classify heart disease based on phonocardiogram (PCG) signals using the convolutional neural networks (CNN). The study was initiated with signal preprocessing by cutting and normalizing the signal, followed by a continuous wavelet transformation process using a mother wavelet analytic morlet. The decomposition results are visualized using a scalogram, then the results are used as CNN input. In this study, the PCG signals used were classified into normal, angina pectoris (AP), congestive heart failure (CHF), and hypertensive heart disease (HHD). The total data used, classified into 80 training data and 20 testing data. The obtained model shows the level of accuracy, sensitivity, and diagnostic specificity of 100%, 100%, and 100% for training data, respectively, while the prediction results for testing data indicate the level of accuracy, sensitivity, and specificity of 85%, 80%, and 100%, respectively. This result proved to be better than the mother wavelet or other classifier methods, then the model was deployed into the graphical user interface (GUI).