Claim Missing Document
Check
Articles

Found 15 Documents
Search

Enhancing Medical Image Security Using Hyperchaotic Lorenz and Josephus Traversing Encryption Rachmawanto, Eko Hari; Pramudya, Elkaf Rahmawan; Pratama, Zudha
Scientific Journal of Informatics Vol. 11 No. 4: November 2024
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v11i4.9815

Abstract

Purpose: The present work focuses on developing a methodology to encrypt medical images using combined Hyperchaotic Lorenz systems with Josephus Traversing. This, therefore, forms the basis of the present paper to establish the efficacy of the proposed method against glioma, meningioma, and pituitary kinds of brain tumor images at 256 × 256 and 512 × 512 pixels image sizes. Methods: In this regard, a state-of-the-art encryption technique based on the Hyperchaotic Lorenz systems for Josephus Traversing has been proposed against the medical images of glioma, meningioma, and pituitary tumor datasets obtained from the repository via medical imaging. Result: The different distortion of test outcomes has the MSE value lying between 69.01 and 172.1, while fidelity preservation-PSNR lies between 12.971 and 18.321 dB for different tumor types and sizes of images. The UACI is between 3.625 and 11.34, while the NPCR is always greater than 99% to show very high tamper resistance. This approach is very new in integrating chaos and traversal algorithms for encrypting medical images. Hence, it has a great promising enhancement of security and protection of patient privacy. Novelty: This research contributes a comprehensive investigation based on different metrics that allows exploring not only the efficiency but also strength against decryption techniques for a proposed encryption method. More investigations could be done for further research work in order to enhance the encryption speed, which would improve robustness against advanced decryption techniques in medical image security for digital health applications.
Peningkatan Daya Jual Produk Anyaman Bambu Desa Kanyoran Kabupaten Kediri Berbasis WEB Hidajat, Sjamsul; Pratama, Zudha; Wibowo, Dibyo Adi; Natanael, David Febrian; Burhanudin, Muhammad; Puspa, Silfi Andriana; Yulianti, Shinta Rachma
Jurnal Pengabdian kepada Masyarakat Vol. 12 No. 1 (2025): JURNAL PENGABDIAN KEPADA MASYARAKAT 2025
Publisher : P3M Politeknik Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33795/abdimas.v12i1.6413

Abstract

This research aims to evaluate the web system training conducted in Kanyoran Village, Kediri Regency, focusing on the development of applications that benefit the community. The issue faced by the villagers is the lack of understanding and skills in utilizing digital technology for marketing their craft products, particularly bamboo weaving. In response to this challenge, the research employs a step-by-step training method, beginning with an introduction to the material and extending to the use of hosting services. Over the course of two days, participants were equipped with practical skills through interactive teaching designed to enhance their knowledge and confidence in using digital applications. The evaluation results indicate that the majority of participants found the training material easy to understand, the developed application useful, and the hosting training sufficiently clear. The questionnaires filled out by participants revealed that 70% of respondents felt motivated to use the application for further marketing. Thus, the training successfully achieved its goal of improving the community's understanding and skills in leveraging digital technology. Recommendations for future activities include extending the training duration and providing more hands-on practice sessions to enhance participants' confidence in using the application, as well as incorporating advanced modules that cover deeper digital marketing strategies
PERFORMA CONVOLUTIONAL NEURAL NETWORK DALAM DEEP LAYERS RESNET-50 UNTUK KLASIFIKASI MRI TUMOR OTAK Rachmawanto, Eko Hari; Hermanto, Didik; Pratama, Zudha; Sari, Christy Atika
Semnas Ristek (Seminar Nasional Riset dan Inovasi Teknologi) Vol 8, No 01 (2024): SEMNAS RISTEK 2024
Publisher : Universitas Indraprasta PGRI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30998/semnasristek.v8i01.7125

Abstract

Tumor otak merupakan penyakit yang sangat kompleks dan beragam, dengan dampak yang serius pada kesehatan manusia. Berdasarkan data dari International Agency for Research on Cancer (IARC), variasi kondisi kesehatan penderita tumor otak disebabkan oleh faktor-faktor seperti ukuran, jenis, lokasi, dan tingkat keparahan tumor. Penelitian ini bertujuan untuk memberikan kontribusi signifikan dalam pemahaman dan deteksi dini tumor otak, dengan harapan dapat meningkatkan prognosis dan pengelolaan penyakit yang mengancam nyawa ini. Menggunakan metode Convolutional Neural Network (CNN) dengan arsitektur ResNet-50, penelitian ini mengembangkan model klasifikasi berdasarkan citra MRI tumor otak. Hasil evaluasi menunjukkan keberhasilan model dengan akurasi rata-rata mencapai 98.82%, memungkinkan identifikasi jenis tumor otak, seperti tumor jinak, meningioma, dan pituitary, dengan tingkat presisi dan recall mencapai 99.22% dan 100% secara berturut-turut. Penelitian ini memberikan harapan baru dalam diagnosis dini, memperkuat penanganan penyakit tumor otak, dan memberikan landasan bagi pengembangan solusi medis yang lebih efektif, membawa dampak positif pada pasien yang mengidap penyakit ini.
Embedding Quantum Random Phase Encoding Arnold Transform for Advanced Image Security Hermanto, Didik; Pratama, Zudha; Hidajat, Moch. Sjamsul
Scientific Journal of Informatics Vol. 11 No. 3: August 2024
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v11i3.12256

Abstract

Purpose: This research proposes an improvised version of the image encryption technique by incorporating Quantum Random Phase Encoding with the Arnold Transform to help enhance the strength and non-predictability of the encryption process. In this research work, some ideas gained from quantum-based methods have been brought to use with conventional approaches in image encryption techniques for enhancing their security. Methods: This model represents the basic methodology that underlies the Arnold Transform for scrambling the arrangement of image pixels to mask recognizable structures within quantum random phase encoding to introduce complexity through quantum-generated random phases. Result: The experimental results show much improvement in encryption efficiency. For example, in the case of "Cameraman" and "Lena", MSE parameters are 98.134 and 104.76, respectively; these now go up to 832.01 and 888.78. This implies that the higher decrement of these values 21.17 dB and 23.98 dB to 13.41 dB and 13.33 dB translates into higher distortion with higher security. Meanwhile, UACI and NPCR are also very steady and the mean value is about 0.3356 to 0.3358 and 99.60 to 99.61, which proves that this method has been effective in changing the pixel's value, and sensitive input changes. Novelty: This work is novel due to the introduction of quantum technologies in the classical methodology of image encryption. While classical techniques make use of conventional transforms for scrambling, like the Arnold Transform, this work embeds quantum randomness and intricacy in the process as a means of encoding namely, Quantum Random Phase Encoding.
Optimalisasi Keamanan Data Teks Menggunakan Kombinasi Algoritma Kriptografi ElGamal Dan Vigenere Cipher Indriyono, Bonifacius Vicky; Pamungkas, Natalinda; Mahmud, Wildan; Pratama, Zudha; Dimentieva, Imelda; Mellati, Pita
Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi) Vol. 7 No. 1 (2023): PROSIDING NSEMINAR NASIONAL INOVASI TEKNOLOGI TAHUN 2023
Publisher : Universitas Nusantara PGRI Kediri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29407/inotek.v7i1.3400

Abstract

Tidak dapat disangkal bahwa perkembangan teknologi informasi saat ini menyebabkan peningkatan kebutuhan akan informasi. Peningkatan ini memicu timbulnya kejahatan terhadap informasi yang ditukar, baik dalam bentuk pencurian maupun penyadapan informasi. Akibatnya, informasi yang seharusnya bersifat rahasia menjadi dapat diakses oleh pihak yang tidak berkepentingan. Untuk menjaga kerahasiaan informasi, diperlukan metode tertentu. Salah satu metode yang bisa dipakai adalah algoritma kriptografi ElGamal dan Vigenere Cipher. Algoritma ElGamal adalah algoritma kriptografi kunci publik yang menggunakan kunci publik untuk enkripsi dan untuk dekripsi nya menggunakan kunci privat. Sementara itu, Vigenere Cipher adalah metode enkripsi alfabetik di mana teks dienkripsi melalui pergeseran karakter yang berbeda dalam teks. Penelitian ini bertujuan untuk meningkatkan keamanan pesan teks dengan menggabungkan algoritma ElGamal dan Vigenere Cipher. Hasil pengujian menunjukkan bahwa pesan teks yang dienkripsi dengan menggunakan Vigenere Cipher dan ElGamal menjadi makin sulit untuk diakses oleh pihak yang tidak berwenang karena adanya banyak pergeseran karakter serta penggunaan kunci yang lebih kompleks.