p-Index From 2020 - 2025
10.809
P-Index
This Author published in this journals
All Journal TEKNIK INFORMATIKA Syntax Jurnal Informatika Jurnal Ilmu Komputer dan Agri-Informatika SITEKIN: Jurnal Sains, Teknologi dan Industri CESS (Journal of Computer Engineering, System and Science) Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) RABIT: Jurnal Teknologi dan Sistem Informasi Univrab Jurnal Informatika Jurnal CoreIT JURNAL MEDIA INFORMATIKA BUDIDARMA Indonesian Journal of Artificial Intelligence and Data Mining Seminar Nasional Teknologi Informasi Komunikasi dan Industri INOVTEK Polbeng - Seri Informatika JURNAL INSTEK (Informatika Sains dan Teknologi) Jurnal Informatika Universitas Pamulang Jurnal Nasional Komputasi dan Teknologi Informasi JURIKOM (Jurnal Riset Komputer) JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) JOISIE (Journal Of Information Systems And Informatics Engineering) Building of Informatics, Technology and Science Progresif: Jurnal Ilmiah Komputer Zonasi: Jurnal Sistem Informasi Journal of Applied Engineering and Technological Science (JAETS) Jurnal Tekinkom (Teknik Informasi dan Komputer) JOURNAL OF INFORMATION SYSTEM MANAGEMENT (JOISM) Indonesian Journal of Electrical Engineering and Computer Science JOURNAL OF INFORMATION SYSTEM RESEARCH (JOSH) Journal of Computer System and Informatics (JoSYC) Jurnal Sistem Komputer dan Informatika (JSON) JUKI : Jurnal Komputer dan Informatika TIN: TERAPAN INFORMATIKA NUSANTARA Jurnal Teknik Informatika (JUTIF) Jurnal Restikom : Riset Teknik Informatika dan Komputer Information System Journal (INFOS) Jurnal Computer Science and Information Technology (CoSciTech) Jurnal UNITEK Bulletin of Computer Science Research KLIK: Kajian Ilmiah Informatika dan Komputer Jurnal Informatika Teknologi dan Sains (Jinteks) Jurnal Informatika: Jurnal Pengembangan IT Jurnal Komtika (Komputasi dan Informatika)
Claim Missing Document
Check
Articles

Found 8 Documents
Search
Journal : KLIK: Kajian Ilmiah Informatika dan Komputer

Analisa Website Donasi Rumah Tahfizh Menggunakan Metode PIECES Raja Sultan Firsky; Fadhilah Syafria; Muhammad Affandes; Reski Mai Candra; Lola Oktavia
KLIK: Kajian Ilmiah Informatika dan Komputer Vol. 3 No. 6 (2023): Juni 2023
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/klik.v3i6.810

Abstract

One of the many media utilized on the internet is websites. Inadequate website performance, an abundance of irrelevant material, an unappealing website design, confusing navigation menus, and several other issues that influence website quality are issues that are frequently observed on websites. A non-profit organization called Rumah Tahfizh Donation operates a website with the domain donasirumahtahfizh.com that serves as a source of information for both website visitors and donors. The lack of website visitors is a problem Rumah Tahfizh Donation has to face. The more people who visit the website are needed so that more and more people know about the Rumah Tahfizh Donation, the more people want to donate through the Rumah Tahfizh Donation. You can use the PIECES Framework as a guide when creating the website in order to raise its quality. The PIECES Framework is a framework that has categories for dividing up issues and coming up with solutions. According to order, the classification is broken down into six groups: performance, information, economics, control, efficiency, and service. Further testing using the GTMetrix tool is required because the PIECES test has a flaw, notably the inability to acquire a load time score. Additionally, GTMetrix offers a grade that includes a score. The grade and score you receive go up the quicker the website loads
Klasifikasi Daging Sapi dan Daging Babi Menggunakan Convolutional Neural Network EfficientNet-B0 dengan Augmentasi Citra Hafez Almirza; Jasril; Suwanto Sanjaya; Lestari Handayani; Fadhilah Syafria
KLIK: Kajian Ilmiah Informatika dan Komputer Vol. 3 No. 6 (2023): Juni 2023
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/klik.v3i6.910

Abstract

The increase in counterfeit beef sales is in line with the growing demand for meat in Indonesia. Counterfeit meat, namely mixed beef and pork and pure pork sold as beef, can be distinguished using image classification. This study classifies pork, mixed, and beef using the Convolutional Neural Network (CNN) model of the EfficientNet-B0 architecture. This study uses the image augmentation method to augment the image with the aim of improving classification accuracy. The total original image is 900, while the total augmented image is 9000. The image data is divided using two data division ratios, namely 80:20 and 90:10. The highest classification accuracy results were obtained by a model using augmented images and a data division ratio of 90:10, with a combination of Adamax hyperparameter optimizer, Swish hidden activation, and a learning rate of 0.1, with an accuracy of 97.11%, precision of 97.14%, recall of 97.11%, and F1-Score of 97.11%. Meanwhile, the highest accuracy of the model using the original image is achieved by the model using a 90:10 division ratio with a combination of hyperparameter optimizer Adamax, hidden activation ReLU, and learning rate 0.01 with the results of accuracy 96.78%, precision 96.92%, recall 96.78%, and F1-Score 96.78%. The results show that the use of image augmentation methods can improve classification accuracy.
Analisis Sentimen Masyarakat Terhadap Kenaikan Biaya Haji Tahun 2023 Menggunakan Metode Naïve Bayes Classifier Hertati; Elin Haerani; Novriyanto; Fadhilah Syafria
KLIK: Kajian Ilmiah Informatika dan Komputer Vol. 4 No. 3 (2023): Desember 2023
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/klik.v4i3.1457

Abstract

The Indonesian government through a meeting of the Ministry of Religion and Commission IVIII of the DPR-RI agreed on the cost of organizing the Hajj pilgrimage (BPIH) i1444 iH/2023 iM, an average of IDR 90,050,637.26 per irregular pilgrimage. However, this policy gave rise to various public responses. The public's anger regarding the increase in Hajj fees in 2023 was found on the social media iTwitter. In this study, we conducted a sentiment classification analysis of Tweets to determine public opinion regarding the increase in Hajj costs in 2023 using the naïve Bayes classifier method because this method tends to be simple and easy to use. The data set used was 3000 tweets with a total of 1866 positive data, 415 negative data. This research resulted in an accuracy value of 81.46% in the 70:30 data division, in the 80:20 data division, namely 80.74% and in the data division. 90:10 which is 79.04. In this research, there were more positive responses from the public, this proves that the increase in Hajj costs in 2023 can be accepted by the public. The highest accuracy in this study was 81.46% with a 70:30 data split. It is recommended that further research use other algorithms to see a comparison of the results of different algorithms in classifying public sentiment regarding the increase in the cost of Hajj in 2023.
Analisis Sentimen Tanggapan Masyarakat Terhadap Kenaikan Biaya Haji Tahun 2023 Menggunakan Metode K- Nearest Neighbor (KNN) Hafsyah; Elin Haerani; Novriyanto; Fadhilah Syafria
KLIK: Kajian Ilmiah Informatika dan Komputer Vol. 4 No. 3 (2023): Desember 2023
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/klik.v4i3.1471

Abstract

The Indonesian government implemented a policy of increasing the cost of Hajj in 2023, but the policy has attracted many positive and negative comments among the public. Public comments are taken from the social media network Twitter, because it contains a lot of information so that it attracts the interest of most people. With the increase in Hajj costs in 2023, it is necessary to conduct sentiment analysis. This study uses  the K-Neearest Neighbor method  because it is easy to apply and the data used are divided into two classes, positive and negative. The results of research on the application of  the K-Nearest Neighbor method in  sentiment analysis of the increase in Hajj costs in 2023 using 3,000 data taken from Twitter comments. The tweet data  used, there were 1866 positive comments and 415 negative comments and the total net data of 2281, judging from the amount of positive data compared to negative  data, obtained an accuracy value of 81.17% in 70:30 data sharing, 79.87% in 80:20 data sharing, 77.73% in 90:10 data sharing. Meanwhile, the highest accuracy value was 81.17% with  82.48% precision, 97.67% recall, F1- Score 89.43%.  In this study, there were more positive responses, this proves that the increase in Hajj costs in 2023 using  the K-Nearest Neighbor (KNN)  method can be accepted by the community
Klasifikasi Data Penerimaan Zakat dengan Algoritma K-Nearest Neighbor Alfin Hernandes; Siska Kurnia Gusti; Fadhilah Syafria; Lestari Handayani; Siti Ramadhani
KLIK: Kajian Ilmiah Informatika dan Komputer Vol. 4 No. 3 (2023): Desember 2023
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/klik.v4i3.1528

Abstract

National Amil Zakat Agency (BAZNAS) is an institution responsible for managing zakat established by the government. BAZNAS has a presence in every district or city, and one of them is the BAZNAS in the city of Pekanbaru. BAZNAS in Pekanbaru city is responsible for distributing zakat to various empowerment programs, one of which is the Pekanbaru Cares program. Currently, BAZNAS in Pekanbaru city is facing issues related to the method of distributing zakat, where the process of determining the criteria for zakat recipients is still being done manually by the committee of BAZNAS in the city of Pekanbaru. This condition is considered inefficient and poses one of the challenges that need to be addressed. To overcome the mentioned constraints, steps are needed to improve the effectiveness and efficiency of data collection for potential zakat recipients. One of the solutions is to implement a classification system to facilitate the data collection process, using the K-Nearest Neighbor (KNN) method. This approach functions as a tool to classify data for potential beneficiaries. This research aims to classify data and measure the accuracy in assessing the eligibility of zakat recipients based on predetermined criteria, utilizing the K-Nearest Neighbor (K-NN) algorithm. A total of 602 data from BAZNAS in the city of Pekanbaru were used in this study, by dividing the training and test data, namely divided 90:10, 80:20, and 70:30 splits. The evaluation results from the confusion matrix of k=3, k=5, k=7, k=9, and k=11 show that the highest accuracy is achieved at k=5 with an 80:20 split, with an accuracy rate of 89.3%. Furthermore, a precision of 87.3% and a recall of 91.4% can also be attained through this approach.
Classification of Palm Oil Ripeness Level using DenseNet201 and Rotational Data Augmentation Nabyl Alfahrez Ramadhan Amril; Yanto, Febi; Elvia Budianita; Suwanto Sanjaya; Fadhilah Syafria
KLIK: Kajian Ilmiah Informatika dan Komputer Vol. 4 No. 6 (2024): Juni 2024
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/klik.v4i6.1937

Abstract

Indonesia is a country in Southeast Asia with the largest palm oil production in the world. Based on Indonesian Central Statistics Agency data, in 2022 Indonesia produced 46,8 million Tons of Crude Palm Oil (CPO). To produce a high-quality oil, palm oil fruit must be harvested in an optimal condition. But, even a experienced and trained person found it difficult to identify whether the fruit is ripe or raw. In this research theres two type of classification which is ripe and raw, this is because palm oil milling factory only accept pure ripe palm oil fruit and not half ripe or almost ripe. The data that is used in this reseacrh was collected from two sources, the first source is from https://www.kaggle.com/datasets/ahmadfathan/kematangansawit and the second source was collected manually by going to palm oil plantation. The total of data that is used for this research is 1000 data and 1000 augmented data. Dense Convolutional Network (DenseNet) that is used in this research is a CNN architecture that was first introduced in 2017. Compared to DenseNet121 and DenseNet169, DenseNet201 is proven to have a higher level of accuracy. The 90:10 data scheme succeeded in getting the highest accuracy with a total accuracy of 97.50% with a learning rate of 0.001 and a dropout of 0.01
Deep Learning Menggunakan Algoritma Xception dan Augmentasi Flip Pada Klasifikasi Kematangan Sawit Masaugi, Fathan Fanrita; Yanto, Febi; Budianita, Elvia; Sanjaya, Suwanto; Syafria, Fadhilah
KLIK: Kajian Ilmiah Informatika dan Komputer Vol. 4 No. 6 (2024): Juni 2024
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/klik.v4i6.1938

Abstract

Palm oil is an important commodity in Indonesia, especially as Indonesia is the highest palm oil exporting country in the world. Ripe palm fruit is marked by a change in color of the fruit from black to reddish yellow. Apart from that, immature palm fruit has a negative and significant effect on CPO production. The data collection process was carried out by directly taking pictures of palm fruit on oil palm plantations and data obtained from Kaggle. The total amount of data is 1000 images and 1000 data resulting from flip augmentation. The Xception algorithm is an algorithm in deep learning which stands for Extreme version of Inception. This combination was then proven to provide better accuracy in classifying images from a dataset. The optimizer used is the optimizer in TensorFlow, namely Adam (Adaptive Moment Estimation) using learning rate and dropout values. Images of mature and immature palm oil were classified using the Xception algorithm with augmented and without augmented data. In addition, experiments were carried out by changing the parameter values ??of learning rate to 0.1, 0.01, 0.001 and dropout to 0.1, 0.01, 0.001. It was found that the data division was (90;10) with the best accuracy reaching 95%. Test parameters carried out by trialling were proven to increase accuracy when compared to without using parameters and flip augmentation. The best accuracy of the Xception model is 95% on augmented data with a learning rate of 0.001 and a dropout of 0.1.
Implementasi VGG 16 dan Augmentasi Zoom Untuk Klasifikasi Kematangan Sawit Mazdavilaya, T Kaisyarendika; Yanto, Febi; Budianita, Elvia; Sanjaya, Suwanto; Syafria, Fadhilah
KLIK: Kajian Ilmiah Informatika dan Komputer Vol. 4 No. 6 (2024): Juni 2024
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/klik.v4i6.1940

Abstract

Indonesia is a country that has very abundant palm oil plantations and makes palm oil one of the largest export commodities in Indonesia. Fruit maturity on oil palms has a significant influence on palm oil and kernel production. The level of ripeness in palm oil fruit can affect several contents in it, such as tocopherol content, yield and FFA. The classification will be divided into 2 classes, namely between ripe and immature fruit with data on 500 images of ripe fruit and 500 images of immature fruit, data taken from the Kaggle site and private gardens taken using a cellphone camera. The data that has been obtained is augmented which is useful for enriching the data to make it more abundant. Data augmentation uses zoom augmentation and makes the original 1000 data increase to 2000 data. The model used is VGG 16 which is part of deep learning. The existing dataset is then preprocessed, resized and rescaled, then divides the data into 3, namely train, test and valid data. After dividing the data, then carry out the classification process with VGG 16 and set the hyperparameters after that the model will learn with 20 epochs. The model will learn with 57 schemes to compare and find highest accuracy. After the model has finished learning, it is evaluated using a confusion matrix. The results obtained were that the 90:10 data division using data augmentation with a learning rate of 0.01 and a dropout of 0.001 obtained the best accuracy, reaching 93.8%.
Co-Authors Abdul Aziz Abdullah, Said Noor Abdussalam Al Masykur Adrian Maulana Adzhima, Fauzan Afriyanti, Liza Agung Syaiful Rahman Agus Buono Agustina, Auliyah Ahmad Paisal Aji Pangestu Adek Akbar, Lionita Asa Alfin Hernandes Alwaliyanto Alwis Nazir Alwis Nazir Alwis Nazir Alwis Nazir Alwis Nazir Alwis Nazir Amalia Hanifah Artya Aminuyati Andre Suarisman Aprima, Muhammad Dzaky Ariq At-Thariq Putra Benny Sukma Negara Bib Paruhum Silalahi Boni Iqbal Che Hussin, Ab Razak Darmila Dede Fadillah Deny Ardianto Devi Julisca Sari Dina Septiawati Dodi Efendi Eka Pandu Cynthia Elin Haerani Elin Haerani Elin Haerani Elin Haerani Elin Haerani Elin Haerani Elin Haerani Elin Hearani Ellin Haerani Elvia Budianita Faska, Ridho Mahardika Fatma Hayati Fauzan Adzim Febi Nur Salisah Febi Yanto Felian Nabila Fitra Lestari Fitri Insani Fitri Insani Fitri Wulandari Fratiwi Rahayu Gusrifaris Yuda Alhafis Gusti, Siska Kurnia Guswanti, Widya Habibi Al Rasyid Harpizon Hafez Almirza Hafsyah Hara Novina Putri Harni, Yulia Hertati Ibnu Afdhal Ihda Syurfi Iis Afrianty Iis Afrianty Iis Afrianty Iis Afrianty Iis Afrianty Iis Afrianty Iis Afrianty Ikhsan, Tomi Ikhsanul Hamdi Inggih Permana Irma Sanela Ismail Marzuki Ismar Puadi Isnan Mellian Ramadhan Israldi, Tino Iwan Iskandar Iwan Iskandar Iwan Iskandar Iwan Iskandar Iwan Iskandar Iwan Iskandar Jasril Jasril Jasril Jasril Karina Julita Khair, Nada Tsawaabul Lestari Handayani Lestari Handayani Lili Rahmawati Liza Afriyanti Lola Oktavia Lola Oktavia M Fikry M. Afif Rizky A. Ma'rifah, Laila Alfi Masaugi, Fathan Fanrita Maulana Junihardi Mawadda Warohma Mazdavilaya, T Kaisyarendika Mhd. Kadarman Mori Hovipah Mori Hovipah Morina Lisa Pura Muhammad Affandes Muhammad Alvin Muhammad Fahri Muhammad Fikry Muhammad Hanif Abdurrohman Muhammad Ichsanul Bukhari Muhammad Syafriandi, Muhammad Muhammad Yusril Haffandi Muhammad Yusuf Fadhillah Mulyono, Makmur Muslimin, Al’hadiid Nabyl Alfahrez Ramadhan Amril Nailatul Fadhilah Nazir, Alwis Nazruddin Safaat H Neni Sari Putri Juana Nesdi Evrilyan Rozanda Nining Nur Habibah Novriyanto Novriyanto Nurainun Nurainun Okfalisa Okfalisa Permata, Rizkiya Indah Pizaini Pizaini Puspa Melani Almahmuda Putra, Fiqhri Mulianda Putri Mardatillah Putri, Widya Maulida Rahmad Abdillah Rahmad Abdillah Rahmad Kurniawan Rahmadhani, R. Raja Sultan Firsky Ramadhan, Aweldri Ramadhani, Siti Reski Mai Candra Reski Mai Candra Reski Mai Candra Reski Mei Candra Riska Yuliana Roni Salambue Said Nanda Saputra Satria Bumartaduri Silfia Silfia Siska Kurnia Gusti Siska Kurnia Gusti Siti Ramadhani Siti Sri Rahayu Suswantia Andriani Suwanto Sanjaya Syaputra, Muhammad Dwiky Teddie Darmizal Wulandari, Fitri Yusra, Yusra Yusril Hidayat Zabihullah, Fayat Zulastri, Zulastri