Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Malcom: Indonesian Journal of Machine Learning and Computer Science

Klasifikasi Kelayakan Penerima Beasiswa Menggunakan Naive Bayes dengan Optimasi Atribut Berbasis K-Means Clustering: Classification of Scholarship Eligibility Using Naïve Bayes with Attribute Optimization Based on K-Means Clustering Putri, Azhiah; Jasmir, Jasmir; Purnama, Benni
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 5 No. 4 (2025): MALCOM October 2025
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v5i4.2312

Abstract

Penelitian ini bertujuan untuk mengklasifikasikan kelayakan penerima beasiswa di Kecamatan Tabir dengan menggunakan algoritma Naïve Bayes yang dioptimasi melalui K-Means Clustering. Dataset berjumlah 4.155 siswa diproses melalui tahap pra-pemrosesan, mencakup seleksi atribut relevan, pembersihan data, serta transformasi kategori ke bentuk numerik. Proses clustering dilakukan dengan K-Means pada K = 2, 3, dan 5, lalu dievaluasi menggunakan Davies-Bouldin Index (DBI). Hasil terbaik diperoleh pada K = 2 dengan nilai DBI = 0,909, yang selanjutnya digunakan untuk mengelompokkan data menjadi dua klaster, yaitu “Layak” dan “Tidak Layak”. Klaster yang dihasilkan kemudian digunakan untuk mengoptimasi atribut pada tahap klasifikasi menggunakan algoritma Naïve Bayes.. Evaluasi performa menggunakan confusion matrix dengan skema split data 70:30, 80:20, dan 10-fold cross validation. Hasil menunjukkan akurasi masing-masing 96,15%, 96,75%, dan 97,91%; precision 99,90%, 99,85%, dan 99,97%; recall 95,39%, 96,18%, dan 97,47%; serta F1-score 97,60%, 97,97%, dan 98,71%. Berdasarkan hasil tersebut, metode 10-fold cross validation memberikan performa terbaik karena mampu menjaga keseimbangan antara akurasi, precision, recall, dan F1-score. Dengan demikian, integrasi antara K-Means Clustering dan Naïve Bayes terbukti efektif dalam mengoptimasi atribut, serta menghasilkan sistem klasifikasi yang akurat, konsisten, dan andal untuk mendukung keputusan seleksi penerima beasiswa.
Comparison and Data Visualization in Thyroid Cancer Disease Prediction Using Machine Learning Algorithms Yudha, M. Zahran; Jasmir, Jasmir; Fachruddin, Fachruddin
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 6 No. 1 (2026): MALCOM January 2026
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v6i1.2249

Abstract

Thyroid cancer is a common endocrine malignancy requiring accurate early prediction for improved patient outcomes. Comprehensive comparative studies of machine learning algorithms, accompanied by systematic visualization, remain limited. This study compares tree-based algorithms (Decision Trees, Random Forest) and boosting algorithms (Gradient Boosting, XGBoost) for thyroid cancer prediction and develops visualization strategies for clinical interpretation. Four algorithms were evaluated using accuracy (correct prediction proportion), precision (positive predictive value), recall (true positive rate), F1-score (harmonic mean of precision and recall), and AUC-ROC (area under the ROC curve). Visualization techniques, including confusion matrices, ROC curves, and feature importance plots, facilitated the interpretation of the model. XGBoost achieved superior performance with accuracy 95.2%, precision 94.8%, recall 95.6%, F1-score 95.2%, and AUC-ROC 0.978, followed by Random Forest (93.5%, 92.7%, 94.1%, 93.4%, 0.965), Gradient Boosting (91.8%, 90.9%, 92.4%, 91.6%, 0.952), and Decision Trees (87.3%, 86.5%, 88.2%, 87.3%, 0.913). Feature importance analysis identified key predictors. Boosting algorithms, particularly XGBoost, demonstrate superior thyroid cancer prediction across all metrics. Integrated visualization enhances clinical interpretability, providing empirical guidance for implementing machine learning-based diagnostic support systems.