Claim Missing Document
Check
Articles

Found 7 Documents
Search
Journal : INTEK: Jurnal Penelitian

Pengembangan Sistem Penangkal Petir dan Pentanahan Elektroda Rod dan Plat Saini, Makmur; Yunus, A.M. Shiddiq; Pangkung, Andareas
INTEK: Jurnal Penelitian Vol 3 No 2 (2016): Oktober 2016
Publisher : Politeknik Negeri Ujung Pandang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (191.962 KB) | DOI: 10.31963/intek.v3i2.53

Abstract

The specific objective of this research is to producea system of internallightning and Eksternal lightning rod withgrounding which has been widely used in industries such aslightning protection and grounding system of substation,transmission lines and coupling wire used in high-rise buildingseither belong to government or private property. In this study,lightning rod is located outside the building structure that servesto catch or receive the bolt of lightning and the lightning deliverto the ground safely. In this study there were 5 different depths ofelectrode rod; 3 m, 5 m, 7 m, 9 m, and 12 m, moreover, 5 widevariety of electrode plate that are 1 x 1 m2, 0.75 x 0.75 m2, 0.5 x0.5 m2, 0.35 x 0.35 m2, 0.25 x 0.25 m2. For grounding electrode rod with a depth of 3 m, 5 m, 7 m, 9 m, 12 m in dry conditions grounding resistance values obtained ranged from 1.55 to 2.03 Ohm. For moist soil conditions, grounding resistance values obtained ranged from 2.21 to 2.60 Ohm. For wet soil conditions grounding resistance values obtained ranged from 1.97 to 2.34 Ohm. For grounding plate, R11 and R12 on the dry conditions grounding resistance values obtained ranged from 2.08 to 2.45 Ohm. For moist soil conditions grounding resistance values obtained ranged from 1.88 to 2.18 Ohm. For wet soil conditions grounding resistance values obtained ranged from 1.55 to 2.06 Ohm. On the external lightning rod with two added electrodes with a depth of 12 m and then connected in parallel with the electrode plate to get the smallest value of grounding resistance in accordance with the standards prescribed.
Pengembangan Peralatan Simulasi Peralatan Aliran Daya Berbasis Fast Decoupled-Dependent Newton-Raphson dengan Program Interface-Based Delphi Saini, Makmur; Tandioga, Remigius; Pangkung, Andareas; Yunus, A.M Shiddiq
INTEK: Jurnal Penelitian Vol 4 No 1 (2017): April 2017
Publisher : Politeknik Negeri Ujung Pandang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (533.757 KB) | DOI: 10.31963/intek.v4i1.91

Abstract

On one hand, the particular objective of this research is to yield the software program in order to control efficiently the important aspects in electric power systems which can be implemented in industries. In the other hand, the longterm objective is to extend the curriculum, syllabi, laboratory facilities, and to improve the abilities and qualities of graduates continuously either within State Polytechnic of Ujung Pandang or outside. Method used to achieve these objectives is making, design and implementation which will be last for two years. Simulator for generation system in the first stage of the research is balanced six-phase system yielded from the circuit of 3-one phase centre-tap transformers of 220/18 V, 15 A, as the supply of low-tension 3-phase system, which feeds six one-phase transformer of 18/220 V, 20 A, whose output as another balanced 3-phase system with 220 V/phase. From balanced 6-phase system, a balanced 3-phase will simulate generator number 1 and another balanced 3-phase will simulate that of number 2. Interface which is based on Delphi program is to switch all transmission lines. The result of experiment shows that voltages in the two generator busbars experience the significant drop voltage if they work separately, that are 20.5% - 36.4% and 20.5% - 63.6% for generator number 1 and number 2 respectively, for one to three load busbars operated sequentially, which also reveals that greatest voltage drop occurs in the generator busbar with most lines supplied. Simulating the two generators working simultaneously, then voltage drops are more significant, that are 65.9% - 72.7% and 65.9% - 79.5% for generator number 1 and number 2 respectively, for one to three load busbars operated sequentially, which also proves that transformer bank as generator simulator needs to increase its current capacity.
Rancang Bangun Alat Eliminasi Gas Buang Menggunakan Mekanisme Ejektor Saini, Makmur; Nur, Rusdi; Sattar, Sattar; Ibrahim, Ibrahim
INTEK: Jurnal Penelitian Vol 4 No 2 (2017): Oktober 2017
Publisher : Politeknik Negeri Ujung Pandang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (732.473 KB) | DOI: 10.31963/intek.v4i2.154

Abstract

Environmental pollution (pollutants) can be caused by natural events or human care through uncontrolled industrial and technological activities, this can be a threat to living things including humans in the future. This phenomenon is caused by the entry of particles or chemical substances that do not exist in the natural component so that it exceeds the amount that should be. Pollution is the inclusion of substances, energy and aliens into the environment so that the quality of the environment decreases and no longer suitable allocation. Efforts to reduce or control environmental pollution that some environmental scientists and practitioners have done in a better way by the structures produced by various industries and technologies that are seen as backbones. The research installation can provide detailed information about the shape and structure of the current in the pipe (analogized as the exhaust) in the direction and the vertical velocity to air will be inhaled by the fluid of the liquid (air) as motive fluid in the opposite direction. The suction strength of the liquid against the airflow is greatly determined by the vacuum pressure in the chamber because of the effect of the working ejector that is geometrically formed so that the image can be adjusted to that achievement. The parameters used to measure performance in the design of this air-contaminating air-conditioning installation plant are composed of several variables in the ratio of changes between air velocity and liquid flow in opposite directions, vacuum compressions are formed large enough, the fluid flow capacity of the ejector, revascular and the ability to transform gas pollutants into liquid pollutants.
Simulation for Optimizing the Hybrid System of Solar Power Plant (SPP) and Diesel Power Plant (DPP) at Balang Lompo Island Yunus, A.M. Shiddiq; Saini, Makmur; Fuad, M. Syaiful; Isradianto, Isradianto
INTEK: Jurnal Penelitian Vol 7 No 1 (2020): In Press
Publisher : Politeknik Negeri Ujung Pandang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (491.069 KB) | DOI: 10.31963/intek.v7i1.2133

Abstract

Balang lompo Island is supplied by Diesel Power Plant (DPP) and Solar Power Plant (SPP), in the operation of SPP it is considered not optimal due to the amount of solar panel capacity of 200 kWp while MPPT capacity of 120 kW and inverter capacity of 100 kVA, with these conditions the research was carried out with the aim of optimizing the generating system on Balang Lompo Island. The optimization of the generating system is conducted by simulation using Homer Legacy Beta software. By entering several important parameters such as technical, economic, and environmental factors therefore, the simulation results obtained in the form of the most optimal system operating patterns represented by one of the smallest net present cost (NPC) parameters, and also the recommended operating hours between DPP and SPP. The research method employed are the preliminary study research, identification and formulation of problems, data collection, data processing using Homer Legacy v2.81 Beta software, and analysis of the simulation results. In this study there are two conditions are compared, the first condition is the existing condition with an MPPT capacity of 120 kW and an inverter capacity of 100 kVA and the second condition is the addition of MPPT capacity to 200 kW and an inverter capacity of 200 kVA. Based on the results, it can be concluded that with the addition of capacity in SPP equipment, namely MPPT capacity to 200 kW and inverter capacity to 200 kVA, it is proven to be able to save NPC costs, O&M costs, fuel costs, reduction in DPP operating hours and DPP fuel consumption. With an NPC value of US $ 3,362,929 (IDR. 48,957,520,382), with the implementation of this system the NPC cost savings could reach US $ 197,161 (IDR. 2,870,269,838) during the 25-year operating period, and savings in US fuel/HSD consumption costs $ 23,936 (IDR. 348,460,288) per year.
Optimal Design of PSS on SMIB Using Particle Swarm Optimization Djalal, Muhammad Ruswandi; Saini, Makmur; Yunus, A.M Shiddiq
INTEK: Jurnal Penelitian Vol 8 No 1 (2021): April 2021
Publisher : Politeknik Negeri Ujung Pandang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31963/intek.v8i1.2893

Abstract

Dynamic disturbances in the power system are caused by sudden changes in load. This condition causes the stability of the generator to be disturbed, such as the emergence of oscillations in the generator in the form of oscillations of frequency and rotor angle. Power System Stabilizer (PSS) is an additional control that can increase generator stability. To get optimal PSS performance, proper tuning of PSS parameters is needed. Optimal performance of PSS can cause the frequency response and angle of the SMIB rotor to be stable. In this study, PSO is used for optimization of PSS parameters. PSS is able to provide stability so that overshoot oscillations can be suppressed, as well as faster settling time performance for the system to reach steady state conditions. To test the reliability of the SMIB, a case study of adding and subtracting loads was used.
Power Flow Analysis in N-1 Contingency Conditions Due to the Entry of Renewable Power Plants in the Sulselrabar System Djalal, Muhammad Ruswandi; Saini, Makmur; Yunus, A.M Shiddiq
INTEK: Jurnal Penelitian Vol 9 No 1 (2022): April 2022
Publisher : Politeknik Negeri Ujung Pandang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31963/intek.v9i1.3742

Abstract

Contingency analysis on a 150 kV network aims to see the network's reliability against interference. Contingency is a scheme for releasing one element of the generating unit or transmission line (N-1), which will affect the performance and reliability of the electric power system. Power flow analysis in an electric power system is an analysis that reveals the performance of an electric power system and the flow for certain conditions when the system is working. The analysis was carried out using the ETAP 16.00 software. The method used was the newton raphson to calculate the load flow in the N-1 contingency condition. From the results of the study, it can be seen that the power flow occurs in each channel of the 150 kV system in the South Sulawesi system. When conducting a contingency analysis of N-1 by removing the load on the middle lane of South Sulawesi, namely Maros and Sidrap, a voltage change occurs, increasing buses experiencing critical and marginal voltage conditions. This happens because of the sudden release of essential loads, so over or under voltage appears on the bus.
Monitoring the Condition of the 20 kV Switching Substation in the Tual Rayon Saumlaki Area Pangkung, Andareas; Sonong, Sonong; Saini, Makmur; Djalal, Muhammad Ruswandi; Jamal, M Fachmi
INTEK: Jurnal Penelitian Vol 10 No 2 (2023): October 2023
Publisher : Politeknik Negeri Ujung Pandang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31963/intek.v10i2.4626

Abstract

A 20 kV cubicle is a set of electrical equipment installed in a distribution substation as a distributor, circuit breaker, connector, controller, and protection system for the 20 kV voltage power distribution. The frequent issue in these cubicles is corona discharge on electrical equipment, which is a phenomenon occurring when the air around conductors or conductive materials becomes ionized, resulting in the release of charges that can lead to insulation failure in the equipment. The consequences are severe as it can damage the equipment inside the cubicle and cause power losses. This research analyzes the influence of humidity, temperature, sound, and light conditions inside the cubicle to identify the symptoms of corona discharge in the 20 kV cubicle and its accessories. The goal is to create a tool that can address and anticipate the issues related to corona discharge caused by the effects of humidity, temperature, sound, and light.