This Author published in this journals
All Journal IAES International Journal of Artificial Intelligence (IJ-AI) International Journal of Applied Power Engineering (IJAPE) MEDIA ELEKTRIKA Lontar Komputer: Jurnal Ilmiah Teknologi Informasi Majalah Ilmiah Teknologi Elektro Transmisi: Jurnal Ilmiah Teknik Elektro Mechatronics, Electrical Power, and Vehicular Technology Jurnal Sains dan Teknologi Jurnal Teknik Elektro Jurnal Teknik Elektro JUTI: Jurnal Ilmiah Teknologi Informasi Jurnal Teknologi Sinergi Jurnal Teknologi Informasi dan Ilmu Komputer International Journal of Advances in Intelligent Informatics CESS (Journal of Computer Engineering, System and Science) ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika EMITTER International Journal of Engineering Technology JURNAL NASIONAL TEKNIK ELEKTRO Proceeding of the Electrical Engineering Computer Science and Informatics PROtek : Jurnal Ilmiah Teknik Elektro Journal of Electrical Technology UMY Jurnal Teknologi dan Sistem Komputer International Journal of Artificial Intelligence Research Journal of Information Technology and Computer Science Jurnal TAM (Technology Acceptance Model) Abdimas Dewantara JURNAL INSTEK (Informatika Sains dan Teknologi) SENTIA 2015 INTEK: Jurnal Penelitian Jurnal Intake : Jurnal Penelitian Ilmu Teknik dan Terapan EPI International Journal of Engineering Jurnal Teknologi Elekterika Jurnal Abdi Insani Jurnal JEETech JEEE-U (Journal of Electrical and Electronic Engineering-UMSIDA) Jurnal Fortech Jurnal Teknik Mesin Sinergi Makara Journal of Technology Techno Jurnal Ilmiah Teknik Elektro Journal of Advanced Technology and Multidiscipline (JATM) Sewagati Majalah Ilmiah Teknologi Elektro Jurnal TAM (Technology Acceptance Model) Jurnal FORTECH
Claim Missing Document
Check
Articles

Capacitive Energy Storage (CES) Optimization For Load Frequency Control in Micro Hydro Power Plant Using Imperialist Competitive Algorithm (ICA) Djalal, Muhammad Ruswandi; Yunus, Muhammad; Imran, Andi; Setiadi, Herlambang
EMITTER International Journal of Engineering Technology Vol 5, No 2 (2017)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (502.913 KB) | DOI: 10.24003/emitter.v5i2.195

Abstract

This research will discuss a strategy of frequency control at micro hydro power plant using Capacitive Energy Storage (CES). CES is a device that can store and release energy quickly. To optimize CES performance, proper tuning is required to optimize CES performance. To obtain optimal CES parameter on micro hydro, artificial intelligence method based on Imperialist Competitive Algorithm (ICA) is used. Proportional Integral Derivative Controller (PID) is still a controller that can not be separated from the system, therefore in this research will be combined with CES as the main controller for frequency control on micro hydro. The simulation results show that the application of ICA in optimizing PID-CES parameters, can well improve micro hydro performance. The control models discussed in this research are Proportional Controller (P), Proportional Integral Controller (PI), Proportional Derivative Controller (PD), PID Controller, CES Controller and PID-CES Controller. From the simulation results obtained, P controller overshoot of -0.0001254, with PI Controller -0.000125, with PD Controller -0.0001252, with PID controller -0.0001249, with CES controller -0.0001224, and with PID-CES -1.371e-05. From the results of some of the controller models, it can be concluded that the PID-CES controller proposed in this study has a very significant effect to reduce the frequency oscillation in micro hydro, and it is very suitable to be applied for frequency control at micro hydro.
Desain Sistem Kontrol Pitch Angle Wind Turbine Horizontal Axis Menggunakan Firefly Algorithm Djalal, Muhammad Ruswandi; Imran, Andi; Setiadi, Herlambang
Jurnal Teknik Elektro Vol 9, No 1 (2017): Jurnal Teknik Elektro
Publisher : Jurusan Teknik Elektro, Fakultas Teknik, Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jte.v9i1.9710

Abstract

Abstrak - Pitch variable-speed wind turbine telah berkembang pesat dalam beberapa tahun terakhir. Ada dua strategi kontrol untuk mengontrol variable kecepatan pada wind turbine. Saat kecepatan angin rendah di bawah nilai rata-rata, pengatur kecepatan harus dapat mengatur kecepatan rotor secara terus-menerus untuk mempertahankan kecepatan pada sebuah level, yang memberikan koefisien daya maksimum, sehingga efisiensi turbin akan meningkat. Pengaturan pitch angle diperlukan dalam kondisi kecepatan angin diatas yang diinginkan. Perubahan kecil pada pitch angle dapat mempengaruhi output daya. Pitch angle control adalah salah satu cara untuk menyesuaikan torsi aerodinamik pada tubin angin saat kecepatan angin berada diatas nilai kecepatan dan beberapa variable control lainnya, seperti kecepatan angin, kecepatan generator, dan daya generator. Dalam makalah ini akan akan dirancang variable control untuk memaksimalkan energi dari turbin angin. Perancangan variable control ini menggunakan PID controller. PID controller (Proporsional Integrator Diferensial) merupakan sebuah alat untuk mengontrol sebuah sistem, PID controller ini digunakan untuk mengontrol Permanent Magnet Synchronous Generator (PMSG). Hasil penelitian menunjukkan bahwa menggunakan PID controller lebih stabil dan daya output lebih optimal.Keyword – turbin angin, pitch angle control,  PID Controller
Kontrol Kecepatan Motor Induksi menggunakan Algoritma Backpropagation Neural Network DJALAL, MUHAMMAD RUSWANDI; HUTORO, KOKO; IMRAN, ANDI
ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika Vol 5, No 2 (2017): ELKOMIKA
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/elkomika.v5i2.138

Abstract

ABSTRAKBanyak strategi kontrol berbasis kecerdasan buatan telah diusulkan dalam penelitian seperti Fuzzy Logic dan Artificial Neural Network (ANN). Tujuan dari penelitian ini adalah untuk mendesain sebuah kontrol agar kecepatan motor induksi dapat diatur sesuai kebutuhan serta membandingkan kinerja motor induksi tanpa kontrol dan dengan kontrol. Dalam penelitian ini diusulkan sebuah metode artificial neural network untuk mengontrol kecepatan motor induksi tiga fasa. Kecepatan referensi motor diatur pada kecepatan 140 rad/s, 150 rad/s, dan 130 rad/s. Perubahan kecepatan diatur pada setiap interval 0.3 detik dan waktu simulasi maksimum adalah 0,9 detik. Kasus 1 tanpa kontrol, menunjukkan respon torka dan kecepatan dari motor induksi tiga fasa tanpa kontrol. Meskipun kecepatan motor induksi tiga fasa diatur berubah pada setiap 0,3 detik tidak akan mempengaruhi torka. Selain itu, motor induksi tiga fasa tanpa kontrol memiliki kinerja yang buruk dikarenakan kecepatan motor induksi tidak dapat diatur sesuai dengan kebutuhan. Kasus 2 dengan control backpropagation neural network, meskipun kecepatan motor induksi tiga fasa berubah pada setiap 0.3 detik tidak akan mempengaruhi torsi. Selain itu, kontrol backpropagation neural network memiliki kinerja yang baik dikarenakan kecepatan motor induksi dapat diatur sesuai dengan kebutuhan.Kata kunci: Backpropagation Neural Network (BPNN), NN Training, NN Testing, Motor.ABSTRACTMany artificial intelligence-based control strategies have been proposed in research such as Fuzzy Logic and Artificial Neural Network (ANN). The purpose of this research was design a control for the induction motor speed that could be adjusted as needed and compare the performance of induction motor without control and with control. In this research, it was proposed an artificial neural network method to control the speed of three-phase induction motors. The reference speed of motor was set at the rate of 140 rad / s, 150 rad / s, and 130 rad / s. The speed change was set at every 0.3 second interval and the maximum simulation time was 0.9 seconds. Case 1, without control, shows the torque response and velocity of three-phase induction motor without control. Although the speed of three phase induction motor was set to change at every 0.3 seconds, it would not affect the torque. The uncontrolled three-phase induction motors had poor performance due to induction motor speeds could not be adjusted as needed. Case 2 with backpropagation neural network control, although the speed of three phase induction motor changing at every 0.3 seconds would not affect the torque. In addition, the backpropagation neural network control had a good performance because the speed of induction motor could be adjusted as needed.Keywords: Backpropagation Neural Network (BPNN), NN Training, NN Testing, Motor
DESAIN OPTIMAL POWER SISTEM STABILIZER PADA UNIT PEMBANGKIT BAKARU BERBASIS ANT COLONY OPTIMIZATION Djalal, Muhammad Ruswandi; Nawir, Herman; Sonong, Sonong; Marhatang, Marhatang
Transmisi Vol 21, No 3 Juli (2019): TRANSMISI
Publisher : Departemen Teknik Elektro, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (849.978 KB) | DOI: 10.14710/transmisi.21.3.70-78

Abstract

Salah satu peralatan kontrol tambahan yang mampu meningkatkan kestabilan suatu system pada generator adalah Power System Stabilizer (PSS). Ketika terjadi osilasi gangguan pada generator, PSS memberikan sinyal tambahan ke peralatan eksitasi untuk memberikan redaman tambahan pada generator. Penggunaan PSS diperlukan koordinasi penentuan parameter yang tepat untuk mencapai kontrol kinerja yang bagus untuk sistem. Pada penelitian ini, metode kecerdasan buatan algoritma Ant Colony Optimization (ACO) digunakan untuk mengoptimasi parameter PSS. Dari hasil simulasi didapatkan parameter PSS yang optimal ditinjau dari respon osilasi overshoot dan sudut rotor. Kinerja sistem tanpa PSS didapatkan overshoot frekuensi sebesar -0,02242 s/d 0,005241 pu, kemudian PSS dengan Trial error sebesar -0,0196 s/d 0,003704 pu, PSS Bat sebesar -0.01394 s/d 0.0007533 pu, dan dengan metode ant colony didapatkan overshoot yang berkurang yaitu sebesar -0,0128 s/d 0,0003349 pu. Sedangkan untuk respon sudut rotor didapatkan tanpa PSS sebesar -4,71 s/d 4,486e-05 pu, PSS trial error sebesar -4,579 s/d 4,486e-05 pu, PSS Bat sebesar -4.71 s/d 4.486e-05, dan PSS ant colony sebesar -4,566 s/d 4,545e-05 pu. Implementasi metode cerdas sebagai metode penalaan PSS dapat memperbaiki kinerja generator dalam meredam osilasi sistem multimesin.
Frequency stability improvement of micro hydro power system using hybrid SMES and CES based on Cuckoo search algorithm Djalal, Muhammad Ruswandi; Setiadi, Herlambang; Imran, Andi
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 8, No 2 (2017)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3605.576 KB) | DOI: 10.14203/j.mev.2017.v8.76-84

Abstract

Micro hydro has been chosen because it has advantages both economically, technically and as well as in terms of environmental friendliness. Micro hydro is suitable to be used in areas that difficult to be reached by the grid. Problems that often occur in the micro hydro system are not the constant rotation of the generator that caused by a change in load demand of the consumer. Thus causing frequency fluctuations in the system that can lead to damage both in the plant and in terms of consumer electrical appliances. The appropriate control technology should be taken to support the optimum performance of micro hydro. Therefore, this study will discuss a strategy of load frequency control by using Energy Storage. Superconducting magnetic energy storage (SMES) and capacitor energy storage (CES) are devices that can store energy in the form of a fast magnetic field in the superconducting coil. For the optimum performance, it is necessary to get the optimum tuning of SMES and CES parameters. The artificial intelligence methods, Cuckoo Search Algorithm (CSA) are used to obtain the optimum parameters in the micro hydro system. The simulation results show that the application of the CSA that use to tune the parameters of hybrid SMES-CES-PID can reduce overshoot oscillation of frequency response in micro hydro power plant.
Optimization of SMES and TCSC using particle swarm optimization for oscillation mitigation in a multi machines power system Lastomo, Dwi; Setiadi, Herlambang; Djalal, Muhammad Ruswandi
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 8, No 1 (2017)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (316.377 KB) | DOI: 10.14203/j.mev.2017.v8.11-21

Abstract

Due to the uncertainty of load demand, the stability of power system becomes more insecure. Small signal stability or low-frequency oscillation is one of stability issues which correspond to power transmission between interconnected power systems. To enhance the small signal stability, an additional controller such as energy storage and flexible AC transmission system (FACTS) devices become inevitable. This paper investigates the application of superconducting magnetic energy storage (SMES) and thyristor controlled series compensator (TCSC) to mitigate oscillation in a power system. To get the best parameter values of SMES and TCSC, particle swarm optimization (PSO) is used. The performance of the power system equipped with SMES and TCSC was analyzed through time domain simulations. Three machines (whose power ratings are 71.641, 163, and 85 MW) nine buses power system was used for simulation. From the simulation results, it is concluded that SMES and TCSC can mitigate oscillatory condition on the power system especially in lowering the maximum overshoot up to 0.005 pu in this case. It was also approved that PSO can be used to obtain the optimal parameter of SMES and TCSC.
PENALAAN OPTIMAL KONTROLER PSS-PID PADA SISTEM SINGLE MACHINE INFINITE BUS MENGGUNAKAN ANT COLONY OPTIMIZATION Djalal, Muhammad Ruswandi; Kadir, Nasrun
JST (Jurnal Sains dan Teknologi) Vol 10, No 1 (2021)
Publisher : Universitas Pendidikan Ganesha

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (323.326 KB) | DOI: 10.23887/jst-undiksha.v10i1.20851

Abstract

Perubahan beban pada sistem tenaga listrik secara tiba-tiba menyebabkan terjadinya gangguan dinamik. Gangguan tersebut menyebabkan kestabilan generator terganggu, karena generator tidak merespon gangguan tersebut secara cepat. Hal ini menyebabkan terjadinya osilasi pada generator berupa osilasi frekuensi dan sudut rotor. Salah satu peralatan kontrol tambahan yang mampu meningkatkan kestabilan suatu generator adalah Power Sistem Stabilizer (PSS) dan Proportional Integral Derrivative (PID). Dalam aplikasinya, penentuan parameter kontroler ini masih menggunakan metode trial & error, metode ini sangat sulit untuk mendapatkan parameter yang tepat. Dengan menggunakan metode cerdas berbasis Ant Colony didapatkan parameter PSS-PID yang optimal. Dengan penalaan optimal didapatkan respon frekuensi dan sudut rotor sistem SMIB yang optimal, ditunjukkan dengan respon overshot sistem yang minimum. Kontroler mampu memberikan kestabilan sehingga osilasi overshoot dapat diredam, serta kinerja settling time yang semakin cepat untuk sistem menuju ke kondisi steady state. Untuk menguji kestabilan sistem SMIB digunakan studi kasus penambahan dan pengurangan beban, dengan metode kontrol yang diusulkan PSS-PID yang dioptimasi menggunakan Ant Colony.
Aplikasi Metode Cerdas untuk Optimasi Controller PID Motor DC Berbasis Firefly Algorithm Djalal, Muhammad Ruswandi; Nurohmah, Hidayatul; Imran, Andi; Yunus, Muhammad Yusuf
JURNAL NASIONAL TEKNIK ELEKTRO Vol 6, No 2: Juli 2017
Publisher : Jurusan Teknik Elektro Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jnte.v6n2.393.2017

Abstract

Controlling the speed of dc motor is very important to maintain the stability of motor operation. One of the most commonly used control methods is the proportional integral derivative (PID) controller. In order to operate optimally, PID controllers need the correct parameter tuning. One of the problems in using PID controllers is the determination of the proper PID parameters. In the determination of PID controller parameters is still done conventionally, so the performance of PID becomes not optimal. Therefore, in this research we will propose one of PID parameter tuning method by using intelligent method based on Firefly Algorithm (FA), to optimize and determine the proper parameters of PID. The FA is one of the smart methods inspired by firefly behavior that moves at night with flashing habits, which are then adapted and applied into intelligent algorithms to solve optimization problems. From the results obtained the Firefly method can well tune the PID parameters, so the resulting overshoot does not exist and settling time is very fast. As a comparison, in this study will also discuss the use of intelligent methods based on Bee Colony and Cuckoo Search.Keywords: PID, Bee-Colony, Cuckoo, Firefly, Settling timeAbstrak - Pengontrolan kecepatan motor dc merupakan hal yang sangat penting untuk menjaga stabilitas operasi motor. Salah satu metode pengontrolan yang sering digunakan adalah kontroler proportional integral derivative (PID). Agar dapat beroperasi dengan optimal, kontroler PID membutuhkan penalaan parameter yang tepat. Salah satu permasalahan dalam penggunaan kontroler PID adalah penentuan parameter PID yang tepat. Dalam penentuan parameter kontroler PID selama ini masih dilakukan secara konvensional, sehingga kinerja PID menjadi tidak optimal. Untuk itu pada penelitian ini akan diusulkan salah satu metode penalaan parameter PID dengan menggunakan metode cerdas berbasis Firefly Algorithm (FA), untuk mengoptimasi dan menentukan parameter yang tepat dari PID. FA adalah salah satu metode cerdas yang terinspirasi dari perilaku firefly yang bergerak dimalam hari dengan kebiasaan berkedip, yang kemudian diadaptasi dan diterapkan menjadi algoritma cerdas untuk menyelesaikan masalah optimasi. Dari hasil yang diperoleh metode Firefly dapat dengan baik menala parameter PID, sehingga overshoot yang dihasilkan tidak ada dan settling time sangat cepat. Sebagai pembanding, pada penelitian ini juga akan dibahas penggunaan metode cerdas berbasis Bee Colony dan Cuckoo Search.Kata Kunci : PID, Bee-Colony, Cuckoo, Firefly, Settling time
Optimal economic dispatch using particle swarm optimization in Sulselrabar system Marhatang Marhatang; Muhammad Ruswandi Djalal
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 11, No 1: March 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v11.i1.pp221-228

Abstract

In this study, a particle swarm optimization (PSO) is proposed to optimize the cost of generating thermal plants in the South Sulawesi system. The study was con ducted by analyzing several methods using the lagrange and ant colony optimization (ACO). PSO algorithm converges on the 11th iteration algorithm with the lowest generation cost obtained, which is Rp129687962.17/hour. While the ACO algorithm converges on the 34th iteration with a generation cost of Rp131,473,269.39/hour. The results of optimization using PSO produce a total thermal power of 400.75 MW and losses of 26.15 MW. The PSO method is able to reduce the cost of generating the South Sulawesi system by Rp11,118,312.07/hour or 7.9%. While using the ACO method generates a generation cost of Rp131,473,269.39/hour to generate power of 400,812 MW with losses of 26,219 MW. The ACO method is able to reduce the cost of generating the South Sulawesi system by Rp9,333,004.9/hour or 6.62%. PSO algorithm provides the lowest cost calculation of generator compared with conventional methods and ACO smart methods. This is also shown in the calculation process, the PSO method completes calculations faster than the ACO method.
A modeling approach for short-term load forcasting using fuzzy logic type-2 in sulselrabar system Muhammad Ruswandi Djalal
International Journal of Artificial Intelligence Research Vol 3, No 1 (2019): June 2019
Publisher : STMIK Dharma Wacana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29099/ijair.v3i1.68

Abstract

This research proposed a modeling approach for 24-hour short-term load forcasting based on fuzzy logic type-2. In this research we get an approach in designing load forecasting model, where previously still using conventional fuzzy logic. Implementation of load forecasting in this research is done on electrical system 150 kV Sulselrabar. Sulselrabar electrical system in its development has grown rapidly, therefore needed a study that to improve system performance, one of which is the study of short-term load forcasting. As the input data used load data from 2010 to 2016 on the same day that is January 8th. To see the accuracy of the results, two approaches are performed, ie fuzzy logic type-1 modeled using Simulink and fuzzy logic type-2 modeled using m-file Matlab. From the analysis results obtained, Mean Percentage Error (MAPE) is the smallest by using Fuzzy Logic Type-2 method, compared with Fuzzy Logic Type-1 method.. Where, MAPE for fuzzy logic type-1 method is 2.133371219%, and by using fuzzy logic type-2 method, MAPE is 1.729778866%.
Co-Authors A. M. Shiddiq Yunus A. M. Shiddiq Yunus A.M Shiddiq Yunus Adnan Ainun Hasri Ahmad Ilham, Amil Ahmad Rosyid Idris Ahmed Abu-Siada Al Irsad, Muhammad Afif Alkautsar, Rifaldi Andareas Pangkung Andareas Pangkung Andarini Asri Andi Imran Andi Wely Fauziah Apollo Apollo Apollo Apollo Apollo Apollo Apollo Apollo Ardaniah, Ardaniah Aulia, Dzacky Awan Uji Krismanto Buana, Chandra Budiman Budisantoso Wirjodirdjo Candra Riawan, Dedet Caturindah, Winarty Chandra Bhuana Deum Patria F Abbas Dian, Faizal Dwi Ajiatmo Dwi Ajiatmo Dwi Ajiatmo Dwi Ajiatmo Dwi Lastomo, Dwi Dwia Ayanis, Rifa Eddy Setyo Koenhardono, Eddy Setyo Faisal Faisal Faisal Faisal Faisal Faisal Faisal Faisal Firdaus Firdaus Firdaus, Aji Akbar Ghazi, Argon Luthfan Golda Evangelista Patrix Hadi Suyono Haque, Gabriel Harus Laksana Guntur Herlambang Setiadi Herlambang Setiadi Herlambang Setiadi Herlambang Setiadi Herlambang Setiadi Herlambang Setiadi Herlambang Setiadi Herlambang Setiadi Herlambang Setiadi Herman HR Herman HR Herman Nauwir Herman Nawir Herman Nawir Herman Nawir Herman Nawir, Herman Hidayat, Muh. Taufik Imam Hidayatul Nurohmah Hidayatul Nurohmah Hidayatul Nurohmah Hidayatul Nurohmah, Hidayatul Himawari, Waseda HR, Herman HUTORO, KOKO I Nyoman Adi Putra Imam Robandi Imam, Muhammad Taufik Imron, Khafit Irsad, Muh. Afif Al Jamal, M Fachmi Kadir, Nasrun Kumala, Arimbi La Ode Musa Lastomo, Dwi Lewi Lewi Machrus Ali Machrus Ali Makmur Saini Marhatang Marhatang Maudini Maudini Muchyiddin, Muhammad Imam Muh Amar Syarifuddin Muh. Ikhra Aliefka Putramardani Muh. Ilham, Andi Muh. Yusril Hamma Muhammad Aldy Rezaldy Muhammad Azhar Muhammad Aziz Muslim Muhammad Kurniawan Muhammad Sulfajar Mas’ud Muhammad Thalib Muhammad Yunus Muhammad Yunus Muhammad Yunus Yunus, Muhammad Yunus Muhammad Yusuf Mappeasse Muhammad Yusuf Yunus Muhammad Yusuf Yunus Mukhtaram, Nurrafii Al MULKI, ABDUL MALIKIL Musthofa, Arif Mustika Ayu Nahlah, Nahlah Nasrun Kadir Nasrun Kadir Nasrun Kadir Natha, Kanidra Nooraini, Ervina Nur Hamzah Nur Hamzah Nurul Andini Palantei, Elyas Prakasa, Mohamad Almas Purnama, Rahma Rahmat Rahmat Rahmat Rahmat Rahmat Rahmat Rahmat Rahmat Ramadhani, Akhmad Remigius Tandioga Rony Seto Wibowo Rustang Rustang Saputra, Reki Aji Satria, Moch. Adri Serpian, Serpian Shiddiq Yunus, A.M Sianturi, Farhan Soedibyo Soedibyo Sonong Sula Cakra Buana, Arya Syam, Syahril Takdir, Ahmad Tangko, Jumadi Tasrif Tasrif Usman Usman Vita Lystianingrum Yanuar Mahfudz Safarudin Yudhi Leo Chandra Yusril Has Barlian Yusuf Yunus, Muhammad