Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Media Statistika

RELATIVE RISK OF CORONAVIRUS DISEASE (COVID-19) IN SOUTH SULAWESI PROVINCE, INDONESIA: BAYESIAN SPATIAL MODELING Aswi, Aswi; Mauliyana, Andi; Tiro, Muhammad Arif; Bustan, Muhammad Nadjib
MEDIA STATISTIKA Vol 14, No 2 (2021): Media Statistika
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/medstat.14.2.158-169

Abstract

The Covid-19 has exploded in the world since late 2019. South Sulawesi Province has the highest number of Covid-19 cases outside Java Island in Indonesia. This paper aims to determine the most suitable Bayesian spatial conditional autoregressive (CAR) localised models in modeling the relative risk (RR) of Covid-19 in South Sulawesi Province, Indonesia. Bayesian spatial CAR localised models with different hyperpriors were performed adopting a Poisson distribution for the confirmed Covid-19 counts to examine the grouping of Covid-19 cases. All confirmed cases of Covid-19 (19 March 2020-18 February 2021) for each district were included. Overall, Bayesian CAR localised model with G = 5 with a hyperprior IG (1, 0.1) is the preferred model to estimate the RR based on the two criteria used. Makassar and Toraja Utara have the highest and the lowest RR, respectively. The group formed in the localised model is influenced by the magnitude of the mean and variance in the count data between areas. Using suitable Bayesian spatial CAR localised models enables the identification of high-risk areas of Covid-19 cases. This localised model could be applied in other case studies.
THE INTERPLAY BETWEEN CLUSTERS, COVARIATES, AND SPATIAL PRIORS IN SPATIAL MODELLING OF COVID-19 IN SOUTH SULAWESI PROVINCE, INDONESIA Aswi Aswi; Muhammad Arif Tiro; Sudarmin Sudarmin; Sukarna Sukarna; Susanna Cramb
MEDIA STATISTIKA Vol 15, No 1 (2022): Media Statistika
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/medstat.15.1.48-59

Abstract

A number of previous studies on Covid-19 have used Bayesian spatial Conditional Autoregressive (CAR) models. However, basic CAR models are at risk of over-smoothing if adjacent areas genuinely differ in risk. More complex forms, such as localised CAR models, allow for sudden disparities, but have rarely been applied to modelling Covid-19, and never with covariates. This study aims to evaluate the most suitable Bayesian spatial CAR localised models in modelling the number of Covid-19 cases with and without covariates, examine the impact of covariates and spatial priors on the identified clusters and which factors affect the Covid-19 risk in South Sulawesi Province. Data on the number of confirmed cases of Covid-19 (19 March 2020 -25 February 2022) were analyzed using the Bayesian spatial CAR localised model with a different number of clusters and priors. The results show that the Bayesian spatial CAR localised model with population density included fits the data better than a corresponding model without covariates. There was a positive correlation between the Covid-19 risk and population density. The interplay between covariates, spatial priors, and clustering structure influenced the performance of models. Makassar city and Bone have the highest and the lowest relative risk (RR) of Covid-19 respectively.
ESTIMATING AND FORECASTING COVID-19 CASES IN SULAWESI ISLAND USING GENERALIZED SPACE-TIME AUTOREGRESSIVE INTEGRATED MOVING AVERAGE MODEL Sukarna Sukarna; Nurul Fadilah Syahrul; Wahidah Sanusi; Aswi Aswi; Muhammad Abdy; Irwan Irwan
MEDIA STATISTIKA Vol 15, No 2 (2022): Media Statistika
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/medstat.15.2.186-197

Abstract

A range of spatio-temporal models has been used to model Covid-19 cases. However, there is only a small amount of literature on the analysis of estimating and forecasting Covid-19 cases using the Generalized Space-Time Autoregressive Integrated Moving Average (GSTARIMA) model. This model is a development of the GSTARMA model which has non-stationary data. This paper aims to estimate and forecast the daily number of Covid-19 cases in Sulawesi Island using GSTARIMA models. We compared two models namely GSTARI and GSTIMA considering the root mean square error (RMSE). Data on a daily number of Covid-19 cases (from April 10, 2020, to May 07, 2021) were used. The location weight used is the inverse distance weight based on the distance between airports in the capital cities of each province. The appropriate models obtained based on the data are the GSTARIMA (1;0;1;1) model and the GSTARIMA (1;1;1;0) model. The results showed that the forecast for the number of new Covid-19 cases is accurate and reliable only for the short term.
Co-Authors A. Nurul Amalia AA Sudharmawan, AA Abdul Rahman Aidid, Muhammad Kasim Andi Feriansyah Andi Feriansyah Andi Gagah Palarungi Taufik Andi Muhammad Ridho Yusuf Sainon Andin P Andi Shahifah Muthahharah Ankaz As Sikib Annas, Suwardi Asrirawan Awaluddin Awaluddin Awi Awi Bobby Poerwanto Bobby Poerwanto Bobby Poerwanto Bustan, Muhammad Nadjib Fahmuddin, Muhammad Halimah Husain Hammado, Nurussyariah Hisyam Ihsan Idul Fitri Abdullah Irwan Irwan Isnaini, Mardatunnisa Kaito, Nurlaila M Nadjib Bustan Mahadtir, Muhamad Mardatunnisa Isnaini Mauliyana, Andi Muhammad Abdy Muhammad Abdy Muhammad Abdy Muhammad Abdy Muhammad Ammar Naufal Muhammad Arif Tiro Muhammad Arif Tiro Muhammad Arif Tiro Muhammad Arif Tiro Muhammad Arif Tiro Muhammad Arif Tiro, Muhammad Arif Muhammad Fahmuddin Muhammad Fahmuddin Muhammad Fahmuddin Sudding Muhammad Kasim Aidid Natalia, Derliani Nini Harnikayani Hasa Nur Aziza S Nurhilaliyah Nurhilaliyah Nurhilaliyah Nurhilaliyah Nurhilaliyah Nurhilaliyah, Nurhilaliyah Nurkaila Kaito Nurul Fadilah Syahrul Nurul Ilmi Nusrang, Muhammad Oktaviana Oktaviana Poerwanto, Bobby Putri, Siti Choirotun Aisyah Rahma, Ina Rahman, Abdul Rahmawati Rahmawati Ramadani, Reski Aulia Rezki Amalia Idrus Ruliana Ruliana Ruliana Ruliana Ruliana Ruliana, Ruliana Sahlan Sidjara Salsabila, Afifah Sapriani Shanty, Meyrna Vidya Siti Choirotun Aisyah Putri Sri Ayu Astuti Sri Rahayu Suardi, Shafira Suci Amaliah Sudarmin Sudarmin Sudarmin Sudarmin Sudarmin Sudarmin Sukarna Sukarna Sukarna Sukarna Sukarna Sukarna Sukarna Sukarna Sukarna Supriadi Yusuf Susanna Cramb Suwardi Annas Suwardi Annas Syafruddin Side Syamsiar, Syamsiar Wahidah Sanusi Wea, Maria Dominggo Yassar, La Ode Salman Zulhijrah Zulhijrah Zulhijrah Zulkifli Rais