Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : International Journal Software Engineering and Computer Science (IJSECS)

E-Commerce Product Recommendation System Using Case-Based Reasoning (CBR) and K-Means Clustering Legito; Wattimena, Fegie Yoanti; Yulianto Umar Rofi'i; Munawir
International Journal Software Engineering and Computer Science (IJSECS) Vol. 3 No. 2 (2023): AUGUST 2023
Publisher : Lembaga Komunitas Informasi Teknologi Aceh (KITA)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35870/ijsecs.v3i2.1527

Abstract

This research proposes and implements an e-commerce product recommendation system that combines Case-Based Reasoning (CBR) and K-Means Clustering algorithms. The main aim of this research is to provide more personalized and relevant product recommendations to e-commerce users. The CBR approach leverages users' transaction history to provide customized recommendations, whereas K-Means Clustering groups users with similar preferences increase the relevance of recommendations. This study assesses the effectiveness of the system by conducting a comprehensive evaluation by comparing system recommendations with actual user preferences. The results of this study reveal that the combined approach of CBR and K-Means Clustering can improve the performance of e-commerce product recommendations, ensure the accuracy of recommendations, and produce a more satisfying shopping experience for users. Although there are limitations in terms of the dataset used and the choice of algorithm parameters, this research makes an important contribution in developing a more adaptive and personalized recommendation system for e-commerce platforms.
The Application of Convolutional Neural Networks in Floristic Recognition Legito; Nuraini, Rini; Judijanto, Loso; Lubis, Ahmadi Irmansyah
International Journal Software Engineering and Computer Science (IJSECS) Vol. 3 No. 3 (2023): DECEMBER 2023
Publisher : Lembaga Komunitas Informasi Teknologi Aceh (KITA)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35870/ijsecs.v3i3.1827

Abstract

In the dynamic field of computer vision, this research explores the application of Convolutional Neural Networks (CNNs) for the complex task of floristic recognition, a critical aspect of botanical and ecological studies. Addressing the challenges posed by the vast diversity and subtle morphological differences among plants, our study leverages CNNs for an efficient and accurate plant identification method. Distinguished by a comprehensive dataset encompassing a wide range of plant species and employing a state-of-the-art CNN model, our research significantly advances the methodology of flower recognition. This paper highlights the CNN model's sophisticated feature extraction and image analysis capabilities, demonstrating its superior performance in classifying a diverse range of flora compared to traditional methods and other machine learning techniques like Support Vector Machines (SVM) and decision trees. Our approach emphasizes practical applications in areas such as agriculture, ecology, and conservation, and offers a powerful tool for rapid and efficient plant identification, crucial in biodiversity studies. The research contributes to the fields of botany, ecology, and environmental conservation, underscoring the transformative potential of CNNs in floristic recognition. It also outlines the future direction for enhancing the model's efficiency, including developing more computationally efficient architectures and expanding training datasets.