Claim Missing Document
Check
Articles

Found 6 Documents
Search

Deteksi Dini Gangguan Kejiwaan dan Peningkatan Kesehatan Mental Remaja melalui Fun Games: Early Detection of Mental Disorders and Enhancement of Adolescent Mental Health through Fun Games Wibowo, Sapto; Priambodo, Anung; Prihanto, Junaidi Budi; Indriarsa, Nanang; Dinata, Vega Candra; Ristanto, Kolektus Oky
ABSYARA: Jurnal Pengabdian Pada Masayarakat Vol 5 No 1 (2024): ABSYARA: Jurnal Pengabdian Pada Masyarakat
Publisher : Universitas Hamzanwadi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29408/ab.v5i1.25135

Abstract

Early detection of mental disorders is crucial for preventing serious impacts on adolescent mental health. Fun games are used as an engaging and acceptable solution for adolescents to identify behavioral and emotional changes, raise mental health awareness, facilitate open dialogues, and reduce the stigma associated with mental disorders. This study aims to train PJOK teachers in Banyuwangi Regency to detect early signs of mental disorders and improve adolescent mental health through fun games. The program was conducted on October 6, 2023, at SMAN 1 Glagah Banyuwangi with 45 participants. The training included mental health identification using instruments adapted from the Mental Health Inventory (MHI) and group dynamics activities from Psychodynamic Play Therapy (PPT). Participant satisfaction surveys showed that 100% were very satisfied with the training, with an average rating above 4.6 on a scale of 1-5. Participants indicated that the training positively impacted their understanding of student mental health and the benefits for PJOK teaching. Post-training, 100% of participants rated the delivery method as excellent. The study concluded that the community service activity successfully enhanced PJOK teachers' understanding of adolescent mental health and underscored the importance of early detection and fun games as therapeutic tools. Future activities should involve teachers from all subjects to maximize mental health awareness and adapt to the dynamic conditions of students' mental health
Hubungan Penggunaan Gadget terhadap Motivasi Belajar Siswa Kelas VII SMP Negeri 6 Surabaya Syah, Ardi Romadhon; Prihanto, Junaidi Budi
Jurnal Pendidikan Tambusai Vol. 9 No. 2 (2025): Agustus
Publisher : LPPM Universitas Pahlawan Tuanku Tambusai, Riau, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/jptam.v9i2.30024

Abstract

Perkembangan teknologi digital telah membawa perubahan positif dan negative yang signifikan dalam dunia pendidikan, salah satunya melalui penggunaan gadget di kalangan siswa. Motivasi belajar merupakan salah satu aspek penting yang menentukan keberhasilan proses pendidikan. Tujuan penelitian untuk mengetahui hubungan antara penggunaan gadget terhadap motivasi belajar siswa VII SMP Negeri 6 Surabaya. Metode yang digunakan pendekatan kuantitatif dengan jenis korelasional. Populasi seluruh siswa kelas VII dengan subjek 369 siswa. instrumen pengumpulan data berupa angket penggunaan gadget dan motivasi belajar. Teknik analisis data penelitian ini menggunakan analisis statistik deskriptif, uji normalitas dan korelasi spearman. Berdasarkan hasil analisis data, diperoleh nilai koefisien korelasi Spearman sebesar r = 0,507 dengan tingkat signifikansi p = 0,001. (p < 0.05) terdapat hubungan signifikan antara penggunaan gadget dengan motivasi belajar siswa kelas VII di SMP Negeri 6 Surabaya. Besar hubungan penggunaan gadget terhadap motivasi belajar siswa kelas VII di SMP Negeri 6 Surabaya cukup kuat (r=0.507).
Hubungan Kadar Hemoglobin, Eating Behaviour, dan Tingkat Kebugaran terhadap Hasil Asesmen Sumatif Pjok Siswa Unggulan Hidayati, Ika Emirulliah; Wahjuni, Endang Sri; Prihanto, Junaidi Budi
Jurnal Keolahragaan Vol 11, No 2 (2025): Jurnal Keolahragaan
Publisher : Universitas Galuh

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25157/jkor.v11i2.20488

Abstract

Hasil belajar siswa merupakan salah satu tolak ukur fundamental dari keberhasilan proses belajar mengajar. Hasil belajar siswa di Kurikulum Merdeka diukur melalui asesmen setiap akhir capaian pembelajaran dan akhir tujuan pembelajaran. Selain proses belajar mengajar, terdapat beberapa faktor yang mempengaruhi hasil belajar siswa. Faktor-faktor tersebut diantaranya status zat besi siswa yang baik, konsumsi nutrisi dalam tubuh siswa yang seimbang, dan tubuh siswa yang bugar. Tujuan penelitian ini untuk mengetahui adanya seberapa besar kontribusi kadar hemoglobin, eating behaviour, dan tingkat kebugaran terhadap hasil asesmen sumatif PJOK siswa unggulan di Madrasah. Metode penelitian yang digunakan adalah kuantitatif dengan jenis korelasional. Sampel penelitian berjumlah 58 siswa dengan rentang usia 13-15 tahun. Teknik pengambilan sampel yang digunakan adalah teknik purposive sampling dengan 4 parameter. Analisis data yang digunakan adalah uji korelasi Spearman dikarenakan jenis data pada dua variabel berbeda. Hasil penelitian menunjukkan bahwa terdapat hubungan yang signifikan secara parsial antara kadar hemoglobin (p= 0.0036), eating behaviour (p=0.013), dan tingkat kebugaran (p=0.008) terhadap hasil asesmen sumatif PJOK siswa unggulan (p<0.05).
From Visual To Understanding: Analysis Of The Effect Of Canva Learning Media On Phbs Motivation Hasanah Aprilia, Niswatin; Prihanto, Junaidi Budi; Ridwan, Mochamad
Jurnal Pendidikan Jasmani (JPJ) Vol 6 No 1 (2025): Jurnal Pendidikan Jasmani (JPJ)
Publisher : Sekolah Tinggi Olahraga dan Kesehatan Bina Guna

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55081/jpj.v6i1.4023

Abstract

Low learning motivation in understanding Clean and Healthy Living Behavior (PHBS) material is still problematic at the elementary school level. Lack of student awareness of healthy behaviors such as washing hands and choosing nutritious foods indicates the need for innovation in learning strategies. This study aims to analyze the effect of Canva-based video media on student learning motivation on the PHBS topic. The study used a quantitative method with a one-group pretest-posttest quasi-experimental design. The research subjects consisted of 19 fourth-grade students at SD Negeri 2 Pule. The research instrument was a motivation questionnaire given before and after treatment. The results of the hypothesis test showed a significance value of 0.000 <0.05, it can be concluded that there was a significant effect after being given treatment with the use of Canva videos on increasing learning motivation. Therefore, Canva media can be used as an alternative technology-based learning that is effective in increasing motivation, especially in PHBS material.
LOGISTIC AND PROBIT REGRESSION MODELING TO PREDICT THE OPPORTUNITIES OF DIABETES IN PROSPECTIVE ATHLETES Ariyanto, Danang; Sofro, A'yunin; Hanifah, A’idah Nur; Prihanto, Junaidi Budi; Maulana, Dimas Avian; Romadhonia, Riska Wahyu
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 18 No 3 (2024): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol18iss3pp1391-1402

Abstract

Diabetes is among the most prevalent chronic diseases globally, posing significant health risks to individuals. The identification of individuals at risk of developing these conditions is of paramount importance, particularly in high-stress and physically demanding activities such as athletic training. To find out the chances of a prospective athlete suffering from diabetes or not, models for binary data can be used, including logistic regression and probit models. The data used is primary data from prospective athletes in East Java, including prospective athletes from the State University of Surabaya and East Java Koni Athletes. This study aimed to develop an early prediction model for diabetes in prospective athletic candidates using a bivariate logistic and probit regression approach while considering the influence of socio-demographic and anthropometric factors. To selecting the best model between logistic regression and probit regression using Akaike’s Information Criterion (AIC) value, the smaller the AIC value gets means that the model is closer to the actual value or being the best model. Logistic regression has a smaller AIC value (129,85) than probit regression, this means that the logistic model is the best model. In this paper, an attempt is made to explore the use of logistic and probit regression to determine the factors which significantly influence the diabetes disease and we got that the logistic model as the best model because it has a smaller AIC value than the probit model. Based on the result of analysis and discussion, it can be concluded that there are two factors called mother’s job and finance which are influenced to the response variable, diabetes disease at significance level of 5%.
Enhanced diabetes and hypertension prediction using bat-optimized k-means and comparative machine learning models Sofro, A'yunin; Ariyanto, Danang; Prihanto, Junaidi Budi; Maulana, Dimas Avian; Romadhonia, Riska Wahyu; Maharani, Asri; Oktaviarina, Affi; Kurniawan, Ibnu Febry; Khikmah, Khusnia Nurul; Al Akbar, Muhammad Mahdy
International Journal of Advances in Intelligent Informatics Vol 11, No 4 (2025): November 2025
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v11i4.1816

Abstract

This research aims to develop an analytical approach to classification statistics. The proposed approach combines machine learning with optimization. Considering the urgency of research related to exploring the best methods to apply to sports data. This study proposes a novel framework that combines the k-means clustering results with the bat algorithm to optimize performance prediction for athletes in Indonesia. The proposed method aims to explore the data by comparing the classification performance of random forests, extremely randomized trees, and support vector machines. We conducted a case study using primary data from 200 respondents at Surabaya State University and the East Java National Sports Committee. The accuracy results in this study indicate that, based on the performance evaluation metric, the best approach is random forest clustering using k-means with bat algorithm optimization, achieving 81.25% accuracy, compared with other machine learning approaches. This research contributes to the field of classification statistics by introducing a novel hybrid framework that integrates machine learning, clustering, and optimization techniques to improve predictive accuracy, particularly in sports analytics. Beyond sports science, the proposed approach can be adapted to other domains that require robust performance prediction and decision support, such as health analytics, educational assessment, and human resource selection.