Claim Missing Document
Check
Articles

Found 29 Documents
Search

Exploring Mathematical Concepts in Buna Woven Fabric Motifs of the Amanuban Community and Their Integration into Mathematics Education Daniel, Farida; Turmudi, Turmudi; Juandi, Dadang; Kusnandi, Kusnandi
Journal La Edusci Vol. 6 No. 2 (2025): Journal La Edusci
Publisher : Newinera Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37899/journallaedusci.v6i2.2117

Abstract

This study explores the mathematical concepts embedded in the woven motifs of Buna, specifically Tais Kaimnutu and Buna Panbuat, from the Amanuban community, and their potential integration into mathematics education. Using a qualitative ethnographic approach, the researchers conducted six months of observations, interviews with indigenous weavers and cultural experts, and documentation of woven patterns. The study reveals that Buna woven motifs embody rich mathematical concepts such as symmetry, geometric transformations, fractals, and group theory, while also reflecting deep cultural values, identity, and spirituality. These motifs serve as intuitive artistic and cosmological expressions, with mathematical interpretations offering a new form of cultural appreciation that respects local contexts. Educationally, these motifs support learning across all levels: introducing symmetry and spatial visualization in elementary school; deepening understanding of transformations and congruence in middle school; exploring fractals and algebraic structures in high school; and fostering culturally responsive teaching in higher education through ethnomathematics integrated with mathematical modeling and topology. Beyond pedagogy, the study emphasizes the importance of integrating indigenous knowledge into formal curricula to strengthen cultural identity, community involvement, and empowerment. It highlights ethnomathematics as a transformative bridge linking academic research, cultural preservation, and community development. Future research should explore participatory curriculum design and community perspectives on the mathematical interpretation of indigenous crafts to enhance educational and cultural sustainability.
Photomath application for learning algebra: Preliminary study on a school in border area Siahaan, Meiva Marthaulina Lestari; Salsinha, Cecilia Novianti; Hijriani, Lailin; Nahak, Selestina; Daniel, Farida
Indonesian Journal of Science and Mathematics Education Vol. 8 No. 1 (2025): Indonesian Journal of Science and Mathematics Education
Publisher : Universitas Islam Negeri Raden Intan Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24042/ijsme.v8i1.24297

Abstract

This research was motivated by the shift in the educational paradigm toward technology-integrated learning and addresses the disparity in facilities between urban and border area schools. It aimed to determine the effect of Photomath on students' cognitive abilities and to assess their attitudes, motivation, belief, and readiness towards its use in a border area school. The instruments employed were pretest, posttest, and questionnaire. This research serves as an initial study on the use of technology in schools located in border areas. A mixed-method approach was employed, combining qualitative and quantitative analyses. The qualitative analysis of student responses was facilitated by Photomath, while the quantitative method followed a pre-experimental one-group pretest-posttest design. The findings showed a 36.25% improvement in algebra test scores. Students’ learning motivation reached 82.97% (very strong), belief in Photomath was 88.13% (very strong), and readiness to use the Photomath was 78.97% (strong). After using Photomath, students understood each stage of solving algebra problems better, indicating that Photomath supported their learning process. The implication is that integrating Photomath in border-area schools provides valuable support for students, particularly in self-directed learning.
MENGATASI PENCILAN PADA PEMODELAN REGRESI LINEAR BERGANDA DENGAN METODE REGRESI ROBUST PENAKSIR LMS Daniel, Farida
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 13 No 3 (2019): BAREKENG: Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (181.878 KB) | DOI: 10.30598/barekengvol13iss3pp145-156ar884

Abstract

Ordinary Least Squares (OLS) is frequent used method for estimating parameters. OLS estimator is not a robust regression procedure for the presence of outliers, so the estimate becomes inappropriate. Least Median of Squares (LMS) is one of a robust estimator for the presence of outliers and has a high breakdown value. LMS estimate parameters by minimizing the median of squared residuals. Least Median of Squares (LMS) The purpose of this study is geting a regression equation that better than the regression equation before using OLS for the data that having outlier. For the first step, checking if there is outlier at data and then searching regression equation with LMS method. In this study used data stackloss and from estimation parameter of this data, LMS estimator showed better results compared to the OLS estimator because the regression equation from LMS method have smaller value of Mean Absolute Percentage Error (MAPE).
Analisis Kesalahan Mahasiswa dalam Pemecahan Masalah pada Mata Kuliah Persamaaan Diferensial Daniel, Farida; Naisunis, Yuliana P.; Taneo, Prida N. L.
Edumatica : Jurnal Pendidikan Matematika Vol 8 No 2 (2018): Edumatica | Jurnal Pendidikan Matematika (Oktober 2018)
Publisher : Department of Mathematics Education, Faculty of Teacher Training and Education, Universitas Jambi

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (410.229 KB) | DOI: 10.22437/edumatica.v8i2.5548

Abstract

Penelitian ini bertujuan untuk mengetahui kesalahan apa saja yang dilakukan oleh mahasiswa dalam pemecahan masalah pada mata kuliah persamaan diferensial. Penelitian ini dilaksanakan di Kampus STKIP Soe pada semester genap tahun akademik 2016/2017 dengan subjek penelitian sebanyak 15 mahasiswa. Penelitian ini adalah penelitian deskriptif kualitatif dengan teknik pengumpulan datanya melalui observasi, analisis hasil kerja dan wawancara. Teknik analisis data yang digunakan adalah teknik analisis Miles and Huberman dengan uji keabsahan data menggunakan triangulasi teknik. Triangulasi teknik dilakukan dengan observasi, analisis hasil kerja mahasiswa dan wawancara. Hasil penelitian ini adalah kesalahan yang dilakukan mahasiswa pada tahap pertama meliputi kesalahan fakta 7%, kesalahan konsep 13.33%, kesalahan dan operasi 7%. Kesalahan tahap kedua yaitu kesalahan fakta 13.33%, kesalahan konsep 13.33% dan juga operasi 13.33%. Kesalahan tahap ketiga adalah kesalahan fakta 12.22, kesalahan konsep 50.56%, kesalahan prinsip 16.67% dan kesalahan operasi 15% serta seluruh mahasiswa melakukan kesalahan tahap empat karena tidak melakukan pengecekan kembali dalam tahapan pemecahan masalah. Solusi yang ditawarkan yaitu mahasiswa harus dibiasakan untuk lebih teliti dalam menyelesaikan soal sesuai tahapan pemecahan masalah khususnya pengecekan kembali serta memperdalam kemampuan dasar turunan dan integralnya..Kata Kunci: analisis kesalahan, pemecahan masalah, persamaan diferensial. The purpose of this is research was to know of errors made by student in solving problems in the course of differential equations. This research was conducted at STKIP Soe Campus in the even semester of academic year 2016/2017 with subjects in this research as many as 15 students. this type of research is qualitative descriptive with the technique of collecting data through observation, analysis of work result and interview. The data analysis technique is Miles and Huberman analysis technique with validity test data by triangulation technique. Triangulation technique is done by observation, analysis of student work and interview. The results of this study is the mistakes made by students in the first stage includes 7% fact errors, 13.33% concept error, 7% error and operation. The second phase error is 13.33% error fact, 13.33% concept error and 13.33% operation. The third stage error is fact errors 12.22, concept error 50.56%, 16.67% principle errors and 15% operation errors and all students make a four stage error for not checking again in the troubleshooting stages. The solution offered is that students begin to be familiarized to solve the problem in accordance with the stages of problem solving, especially the re-checking and the students must deepen their basic and integral abilities. In addition, students must be more thorough in solving the problem so that mistakes that need not be done can be minimized.Keywords: error analysis, differential equations, problem solving.
Pengembangan Buku Ajar Teori Graf untuk Meningkatkan Kemampuan Representasi Matematis Siswa pada Mata Kuliah Matematika Diskrit Daniel, Farida; Taneo, Prida N. L.
Edumatica : Jurnal Pendidikan Matematika Vol 9 No 2 (2019): Edumatica: Jurnal Pendidikan Matematika (October 2019)
Publisher : Department of Mathematics Education, Faculty of Teacher Training and Education, Universitas Jambi

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (285.971 KB) | DOI: 10.22437/edumatica.v9i02.7635

Abstract

Abstract This research aims to develop a graph theory textbook that is valid, practical and effective in improving students' mathematical representation abilities in learning graph theory in discrete mathematics courses. The method used is research and development with the Plomp model development design which consists of five stages in the form of (1) initial investigation, (2) design, (3) realization/construction, (4) tests, evaluations and revisions, (5) implementation. The subjects in this study were students who took discrete mathematics subjects, academic year 2018/2019 Mathematics education program STKIP Soe as many as two classes. Research data collection techniques in the form of observation, tests and questionnaires. The product in the form of a graph theory textbook that was developed was tested for validity based on the results of the assessment of the expert team as a validator. The practicality of the product was tested using questionnaire analysis of student and lecturer responses. Test the effectiveness of textbooks in improving the ability of mathematical representation is done through quasi-experimental research with analysis techniques using independent sample t test and normalized gain score. The results showed that the graph theory textbooks developed were valid, practical and effective in improving students' mathematical representation abilities. Keywords:discrete mathematics, mathematical representation, textbooks
Analisis Kesalahan Siswa dalam Menyelesaikan Soal Cerita Berdasarkan Tahapan Newman dan Upaya Pemberian Scaffolding Upu, Angreny; Taneo, Prida N. L.; Daniel, Farida
Edumatica : Jurnal Pendidikan Matematika Vol 12 No 1 (2022): Edumatica: Jurnal Pendidikan Matematika
Publisher : Department of Mathematics Education, Faculty of Teacher Training and Education, Universitas Jambi

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (953.38 KB) | DOI: 10.22437/edumatica.v12i01.16593

Abstract

This study aims to analyze student errors in solving story problems based on Newman's stages and provide scaffolding to minimize errors made by students. The subjects in this study were 19 students of class VIII4 SMPN 1 Mollo Utara. The method used in this research is descriptive qualitative. Data collection techniques using observation, tests and interviews. The data analysis technique is by the Miles and Huberman model where the validity of the data is tested by technical triangulation. The results showed that the errors made by students in solving story problems based on Newman's stages were misunderstandings, transformation errors, process skills errors and notation errors which were respectively 47,37%; 5,7%; 26,31% and 21,05% of students. A form of error that students did not make at all was a reading error. The scaffolding strategy applied by the teacher to the students to overcome these errors is the strategy of explaining and reviewing the types of errors in understanding, transformation and notation as well as the strategy of explaining, reviewing, and restructuring on the types of errors in process skills. Providing scaffolding in the form of teacher assistance that is explaining, reviewing and restructuring in response to student errors can encourage most students to no longer make mistakes while some students are still wrong when solving problems after being given scaffolding but the error rate is lower than before.
Analisis kemampuan literasi matematis siswa dalam menyelesaikan soal pisa konten change and relationship Selan, Madensi; Daniel, Farida; Babys, Urni
AKSIOMA : Jurnal Matematika dan Pendidikan Matematika Vol 11, No 2 (2020): AKSIOMA: Jurnal Matematika dan Pendidikan Matematika
Publisher : Universitas PGRI Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26877/aks.v11i2.6256

Abstract

Literasi matematis merupakan kemampuan seseorang untuk merumuskan, menerapkan dan menafsirkan matematika dalam berbagai konteks, termasuk kemampuan melakukan penalaran secara matematis, menggunakan konsep, prosedur, fakta dan alat bantu matematika untuk mendeskripsikan suatu fenomena atau kejadian. Tujuan penelitian ini adalah untuk menghasilkan kajian tentang kemampuan literasi matematis siswa dalam menyelesaikan soal PISA konten change and relationship. Penelitian dilakukan di SMA Efata Soe dengan subjek penelitian adalah siswa kelas X Mia 1 sebanyak 30 siswa. Penelitian ini menggunakan pendekatan kualitatif dengan teknik pengumpulan data berupa tes, observasi dan wawancara. Teknik analisis data menggunakan model Miles dan Huberman. Hasil penelitian menunjukkan hanya sebagian kecil siswa yang mampu mencapai semua indikator literasi matematis yaitu mengidentifikasi aspek-aspek matematika, mengubah ke dalam model matematika, merancang model untuk menemukan solusi dan menafsirkan hasil matematika ke dalam konteks dunia nyata. Sebagian besar siswa hanya mampu menyelesaikan soal sampai pada tahap membuat model, menerapkan rancangan model dan masih kesulitan dalam menemukan solusi yang tepat dan menafsirkan ke dalam konteks dunia nyata. Penyebab kesulitan tersebut karena dalam pembelajaran siswa kurang dibiasakan mengerjakan soal-soal latihan maupun tugas berkarakteristik PISA yang membutuhkan  kemampuan literasi matematis dalam penyelesaiannya.
Literasi Matematis berbasis Budaya Menenun Kain Futus Amanuban dari Perspektif Etnomatematika Daniel, Farida; Turmudi, Turmudi; Juandi, Dadang; Kusnandi, Kusnandi
Media Pendidikan Matematika Vol. 13 No. 1 (2025)
Publisher : Universitas Pendidikan Mandalika (UNDIKMA)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33394/mpm.v13i1.15667

Abstract

Penelitian ini bertujuan mendeskripsikan aspek literasi matematis yang terkandung dalam praktik menenun kain futus oleh masyarakat Amanuban melalui pendekatan etnomatematika. Studi ini menggunakan metode kualitatif dengan desain etnografi, di mana data dikumpulkan melalui observasi partisipatif, wawancara mendalam, dan dokumentasi visual terhadap proses menenun. Hasil penelitian menunjukkan bahwa praktik menenun futus merepresentasikan literasi matematis dalam tiga dimensi utama yaitu konten, proses, dan konteks. Pada dimensi konten, aktivitas ini mencakup konsep-konsep matematika seperti sistem bilangan, transformasi geometri, serta proporsi dan perbandingan. Pada dimensi proses, penenun secara intuitif melakukan operasi matematis seperti menghitung jumlah benang, melipat untuk membentuk pola simetris, dan mengatur waktu dalam proses pencelupan. Sementara itu, pada dimensi konteks, kemampuan matematis tercermin dalam pengorganisasian ruang dan bentuk, serta pengambilan keputusan terkait komposisi warna dan motif. Temuan ini memperkuat relevansi pendekatan etnomatematika dalam pembelajaran matematika yang kontekstual, sekaligus memberikan kontribusi terhadap pengembangan kurikulum berbasis budaya lokal dan penguatan identitas budaya masyarakat Amanuban.
EXPLORING FRIEZE PATTERNS IN LOTIS AMANUBAN WOVEN FABRICS: INTEGRATION OF TEKE AND BIKLUSU MOTIFS INTO MATHEMATICS EDUCATION Daniel, Farida; Turmudi, Turmudi; Juandi, Dadang; Kusnandi, Kusnandi
AKSIOMA: Jurnal Program Studi Pendidikan Matematika Vol 14, No 4 (2025)
Publisher : UNIVERSITAS MUHAMMADIYAH METRO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24127/ajpm.v14i4.12463

Abstract

AbstractThe teke (gecko) and biklusu (lizard) motifs in lotis woven fabrics represent symbolic and spiritual values in Amanuban culture while also containing mathematical structures. However, these mathematical aspects are rarely explored, and local weaving traditions are seldom integrated into formal mathematics learning. This gap has led to limited use of cultural resources in supporting students’ understanding of geometry. Therefore, this study identifies the types of frieze patterns in three variants of these motifs and explores their potential for integration into mathematics education. A descriptive qualitative approach was employed, utilizing direct observation, documentation, and interviews with weavers and cultural elders. The primary data consisted of visual representations of the three motifs, which were analyzed through isometric transformations including translation, vertical and horizontal reflection, 180° rotation, and glide reflection. The classification was based on the seven types of frieze patterns as defined by the one-dimensional isometry group theory. The findings reveal that two motifs correspond to the F6 frieze pattern type, while one aligns with the F7 type, demonstrating varying degrees of geometric symmetry complexity. The teke and biklusu motifs can serve as effective contextual tools for mathematics instruction across educational levels, from pattern recognition in primary school to advanced discussions of isometry group theory in higher education. This approach aligns with the goals of the Merdeka Curriculum by linking mathematics learning to meaningful local contexts.