Skin, as the largest human organ, covers more than two square meters and accounts for about 15% of body mass. Consisting of three main layers of epidermis, dermis, and subcutaneous tissue, the skin serves as a physical shield and barrier against infection, injury, and UV radiation. Skin diseases such as chickenpox, monkey pox, measles and herpes are medical challenges that require quick and accurate diagnosis. This study used 520 digital images (130 per category) from Mendeley Data and online sources. The Learning Vector Quantization (LVQ) algorithm was applied for image classification based on the extracted features. Results showed an overall accuracy of 90.74%, with respective accuracies: 97% (chickenpox), 98% (monkey pox), 91% (measles), and 100% (herpes). Evaluation using confusion matrix resulted in accuracy, precision, recall, and F1-score values of 0.91, indicating strong model performance. These findings demonstrate the potential of LVQ as a digital image-based skin disease diagnosis tool.