Claim Missing Document
Check
Articles

Found 3 Documents
Search

LITERATURE REVIEW: THE POTENTIAL OF NON-EDIBLE OILS AS RAW MATERIALS FOR BIODIESEL PRODUCTION: TINJAUAN PUSTAKA: POTENSI MINYAK NON-NON-MAKAN SEBAGAI BAHAN BAKU PRODUKSI BIODIESEL Heni Sugesti; Yogi Chandra; Isma Uly Maranggi; Wahyu Triaji Rahadianto; Eka Putri
Chemical Engineering Journal Storage (CEJS) Vol. 5 No. 3 (2025): Chemical Engineering Journal Storage (CEJS)-June 2025
Publisher : LPPM Universitas Malikussaleh

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29103/cejs.v5i3.23092

Abstract

The global energy crisis and limited fossil fuel resources have prompted the search for sustainable alternative fuels. Biodiesel is one of the environmentally friendly renewable energy solutions that can be produced from various sources, including non-edible oils. Non-edible oils, such as karanja, jatropha, mahua, castor, neem, linseed, jojoba, and rapeseed, offer several advantages, including not competing with food crops, high lipid content, and the ability to be cultivated on marginal land. Biodiesel production from non-edible oils is carried out through a transesterification process using short-chain alcohol with the aid of catalysts, both homogeneous and heterogeneous. The study results indicate that homogeneous base catalysts achieve high conversion efficiencies under specific reaction conditions. Meanwhile, heterogeneous catalysts also provide high yields (>90%). The use of heterogeneous catalysts offers advantages in separation and recycling processes. Based on these findings, non-edible oils have proven to be a viable and strategic feedstock for the production of second-generation biodiesel. This approach supports the development of sustainable energy and the reduction of carbon emissions in the future.
STRATEGIES FOR ENHANCING THE PERFORMANCE OF LI [NIXCOYMN1-X-Y] O2 CATHODE MATERIALS FOR LI-ION BATTERIES HENDRI, YOLA BERTILSYA; Heni Sugesti; Zuqni Meldha; Lisa Legawati; Salma Liska; Yogi Yolanda; Amun Amri
Jurnal Crystal : Publikasi Penelitian Kimia dan Terapannya Vol. 7 No. 2 (2025): Literasi Artikel Penelitian Kimia
Publisher : Program Studi Kimia, Fakultas MIPA, Universitas PGRI Banyuwangi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36526/jc.v7i2.6193

Abstract

Abstract Li[NixCoyMn1-x-y]O2 layered oxides Cathode Materials are among the most widely studied cathode materials for lithium-ion batteries due to their high gravimetric and volumetric energy density compared to other type cathode materials. However, the practical deployment of Ni-rich NCM materials is hindered by severe degradation mechanisms, including cation-mixing, surface reconstruction, electrolyte reactivity, transition metal dissolution, and oxygen release, which compromise cycling stability and safety. This review systematically synthesizes recent progress in advanced modification strategies designed to mitigate degradation in Li[NixCoyMn1-x-y]O2 cathodes. The discussion is structured into four major approaches: (i) surface modification, which employs protective coatings to suppress interfacial reactions and stabilize the cathode–electrolyte interphase; (ii) elemental doping, which strengthens the lattice, reduces cation mixing, and inhibits oxygen evolution; (iii) single-crystal engineering, which eliminates grain-boundary failure and improves thermal stability; and (iv) concentration-gradient architectures, which alleviate internal stress and enhance the durability of Ni-rich cathodes. Empirical evidence demonstrates that these strategies not only extend cycle life but also provide mechanistic insights into the underlying degradation pathways. By consolidating findings from recent experimental, this review highlights the necessity of integrating structural, chemical, and morphological interventions to realize the full potential of Ni-rich NCM cathodes. The insights presented offer a framework for designing safer, higher-performance, and commercially scalable lithium-ion batteries. Abstrak Li[NixCoyMn1-x-y]O2 berbasis oksida berlapis merupakan salah satu material katoda yang paling banyak dikaji dalam pengembangan baterai litium-ion. Keunggulan utamanya terletak pada kerapatan energi gravimetri dan volumetri yang lebih tinggi dibandingkan dengan jenis katoda lain. Namun demikian, penerapan praktis material NCM kaya nikel masih menghadapi sejumlah kendala serius akibat berbagai mekanisme degradasi, antara lain pencampuran kation, rekonstruksi permukaan, reaktivitas dengan elektrolit, pelarutan logam transisi, serta pelepasan oksigen. Mekanisme-mekanisme tersebut secara langsung menurunkan stabilitas siklus dan tingkat keselamatan baterai.Ulasan ini menyajikan sintesis sistematis mengenai perkembangan mutakhir strategi modifikasi lanjutan yang dirancang untuk menekan degradasi pada katoda Li[NixCoyMn1-x-y]O2. Terdapat empat pendekatan utama yang dibahas, yaitu: (i) modifikasi permukaan, melalui penerapan lapisan pelindung guna menekan reaksi antarmuka dan menstabilkan lapisan katoda–elektrolit; (ii) doping unsur, yang berfungsi memperkuat struktur kisi, mengurangi pencampuran kation, serta menekan evolusi oksigen; (iii) rekayasa kristal tunggal, yang mengatasi kegagalan pada batas butir sekaligus meningkatkan stabilitas termal; dan (iv) arsitektur gradien konsentrasi, yang mampu meredam tegangan internal dan memperpanjang daya tahan katoda kaya nikel. Hasil-hasil empiris menunjukkan bahwa penerapan strategi tersebut tidak hanya memperpanjang umur pakai siklus, tetapi juga memperkaya pemahaman tentang mekanisme degradasi yang mendasari. Dengan mengintegrasikan temuan-temuan eksperimental terbaru, ulasan ini menegaskan pentingnya perpaduan intervensi struktural, kimia, dan morfologis untuk mengoptimalkan kinerja katoda NCM kaya nikel. Wawasan yang dihadirkan sekaligus menawarkan kerangka konseptual bagi pengembangan baterai litium-ion yang lebih aman, berkapasitas tinggi, dan memiliki prospek komersialisasi yang luas.
ADHESIVE BEHAVIOR OF POLYCAPROLACTONE/HYDROXYAPATITE COATINGS ON 316L STAINLESS STEEL: A DESIGN OF EXPERIMENTS APPROACH Prabowo, Agung; Ahmad Fadli; Heni Sugesti; Muh Irwan; Syarifuddin Oko; Gading Bagus Mahardika; Marlinda
Jurnal Crystal : Publikasi Penelitian Kimia dan Terapannya Vol. 7 No. 2 (2025): Literasi Artikel Penelitian Kimia
Publisher : Program Studi Kimia, Fakultas MIPA, Universitas PGRI Banyuwangi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36526/jc.v7i2.6212

Abstract

Enhancing the adhesive strength of bioactive coatings is crucial for improving the mechanical stability of metallic implants. This study investigates the effects of three processing parameters—sonication temperature (X₁), PCL/HA ratio (X₂), and drying time (X₃)—on the adhesive strength of poly(ε-caprolactone)/hydroxyapatite (PCL/HA) composite coatings applied to 316L stainless steel substrates. A full factorial 23 experimental design was employed, and the results were analyzed using analysis of variance (ANOVA) and regression modeling. The adhesive strength response ranged from 19.62 MPa to 63.27 MPa. Among the factors studied, the PCL/HA ratio had the most significant positive effect, while drying time showed a minor influence. Interaction plots and response surface analyses revealed a synergistic effect between sonication temperature and PCL/HA ratio, contributing to improved bonding at the coating-substrate interface. The optimization results yielded a predicted maximum adhesive strength of 25.76 MPa at a desirability score of 0.03, highlighting the complexity of parameter interactions. These findings underscore the importance of processing conditions in tailoring coating performance for biomedical applications.