cover
Contact Name
Agus Tedyyana
Contact Email
Agus Tedyyana
Phone
-
Journal Mail Official
agustedyyana@polbeng.ac.id
Editorial Address
-
Location
Kab. bengkalis,
Riau
INDONESIA
INOVTEK Polbeng - Seri Informatika
ISSN : 25279886     EISSN : -     DOI : -
Core Subject : Science,
Jurnal Inovasi dan Teknologi Seri Informatika (Jurnal INOVTEK Polbeng - Seri Informatika) Politeknik Negeri Bengkalis merupakan jurnal informatika berbasis penelitian ilmiah. Jurnal ini diharapkan dapat sebagai wadah akademisi, peneliti dan praktisi menyebarkan hasil penelitian. Jurnal INOVTEK Polbeng - Seri Informatika menerbitkan naskah berkaitan dengan Web and Mobile Computing, Image processing, System Cerdas, Sistem Informasi, Database, DSS, IT project management, Geographical Information System, Teknologi Informasi, Computer Network and Security, Wireless Sensor Network, dan lainya.
Arjuna Subject : -
Articles 261 Documents
Komparasi Algoritma Naïve Bayes dan Support Vector Machine (SVM) pada Analisis Sentimen Capcut Zai, Charles; Isnain, Auliya Rahman
Jurnal Inovtek Polbeng Seri Informatika Vol 9, No 1 (2024)
Publisher : P3M Politeknik Negeri Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35314/isi.v9i1.4054

Abstract

Capcut adalah platform pengeditan video yang dapat digunakan pada smartphone Android, PC, dan browser. Dengan fitur-fiturnya yang inovatif dan kreatif, Capcut terus berupaya untuk meningkatkan kualitas layanannya melalui update berkala. Namun, setiap perubahan tidak selalu sesuai dengan apa yang diharapkan semua pengguna. Ini mengakibatkan berbagai perspektif dan pengalaman dengan aplikasi Capcut, yang tercermin dalam ulasan pengguna di Play Store. Salah satu langkah penting untuk memahami persepsi dan pengalaman pengguna dengan Capcut adalah melaksanakan analisa sentimen. Pada analisis ini melakukan komparasi algortima naïve bayes dan SVM dengan menerapkan optimasi SMOTE. Hasil komparasi pada algoritma naïve bayes mempunyai akurasi 81% dan algoritma SVM mempunyai akurasi 86%, yang menunjukkan bahwa kedua algortima memiliki senimen positif yang lebih baik daripada sebelum menggunakan SMOTE. Disimpulkan dari kedua algoritma bahwa model Support Vector Machine (SVM) terbukti algoritma terbaik. Hasil visualisasi wordcloud sentimen positif mengacu pada kepuasan pengguna dan fitur yang disukai, sedangkan hasil visualisasi wordcloud negatif mengacu pada ketidaknyamanan pengguna dalam melakukan proses pengeditan video.
Rancang Bangun Sistem Informasi Pengelolaan Studio Foto Menggunakan Metode Prototype Aldrin, Yori; Marpaung, Yori Aldrin Lysbetti
Jurnal Inovtek Polbeng Seri Informatika Vol 8, No 2 (2023)
Publisher : P3M Politeknik Negeri Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35314/isi.v8i2.3673

Abstract

Studio foto SevenPixel Photography and Artwork masih mengunakan cara manual dimana para pelanggan harus datang ke studio untuk melakukan pemesanan dan pembayaran kepada pihak studio. Lalu pihak studio mencatat hasil pemesanan dan pembayaran yang dilakukan oleh pelanggan di buku nota. Cara itu tidak efektif karena bisa saja bukti pembayaran hilang sehingga merugikan kedua belah pihak. Aplikasi website ini merupakan solusi yang penulis berikan agar pihak studio dapat mengelola pesanan dan pembayaran menjadi lebih baik serta konsumen dapat melihat paket foto, galeri foto. Memesan dan membayar paket foto menjadi mudah dikarenakan sudah secara online. Website ini dibangun menggunakan bahasa pemrograman PHP dan MySql sebagai database. Metode prototype adalah sebuah metode yang mengikutsertakan user dan developer untuk berunding terkait pembangunan sistem, sehingga developer lebih efektif dalam membangun sistem. Black-box Testing merupakan metode pengujian yang penting karena dapat mengidentifikasi kesalahan dalam fungsi suatu sistem. Hasil pengujian menggunakan metode Black-box Testing didapatkan hasil bahwa sistem dapat berjalan dan berfungsi dengan baik tanpa ada masalah yang berarti. Hasil dari penelitian ini adalah sebuah sistem berbasis website memiliki fitur pemesanan, pembayaran, pencatatan pesanan dan pembayaran konsumen, laporan keuangan pihak studio dan galeri foto.
DETEKSI PLAGIAT TESIS BERBAHASA INDONESIA MENGGUNAKAN METODE COSINE SIMILARITY Ansis, Syukry; Listyaningsih, Endang Palupi; Soetanto, Hari
Jurnal Inovtek Polbeng Seri Informatika Vol 9, No 1 (2024)
Publisher : P3M Politeknik Negeri Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35314/isi.v9i1.4003

Abstract

This research aims to test the performance of the Cosine Similarity method in comparison with the Jaccard Similarity method and to obtain the percentage of similarity. Sample data is obtained from students' data at Budi Luhur campus. The test model will be evaluated by comparing several original theses with documents containing plagiarism. The original documents are processed using Natural Language Processing (NLP) methods. One important NLP method is the Jaro Winkler method, which focuses on spelling correction. Subsequently, text mining algorithms are applied for text processing. The results showed that the Cosine Similarity method achieved high accuracy, at 96.63%, demonstrating its ability to classify documents well as plagiarism or not. The use of Jaccard Similarity shows low accuracy, around 50.5%, but provides an overview of potential improvements or updates to the model to improve performance.Keywords - Cosine Similarity, Jaccard Similarity Thesis Classification, Threshold, NLP
Implementasi Algoritma Support Vector Machine (SVM) untuk Deteksi Banjir Frenica, Agnes; Lindawati, Lindawati; Soim, Sopian
Jurnal Inovtek Polbeng Seri Informatika Vol 8, No 2 (2023)
Publisher : P3M Politeknik Negeri Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35314/isi.v8i2.3443

Abstract

Banjir merupakan bencana yang paling banyak terjadi pada tahun 2022 di Indonesia. Berdasarkan laporan Badan Nasional Penanggulangan Bencana (BNPB), jumlah bencana banjir setara 43,1% dari total kejadian bencana nasional sekitar 1.524 kejadian. Salah satu wilayah yang secara berulang terkena dampak banjir selama periode 2022 hingga 2023 adalah Sumatera Selatan sebanyak 99 kali. Dalam upaya penanggulangan masalah ini, teknologi machine learning dapat digunakan sebagai alat pendeteksi dan peringatan dini terhadap banjir, salah satunya Algoritma SVM. Dalam penelitian ini, kinerja berbagai kernel SVM dinilai, dan kernel dengan kinerja terbaik dipilih untuk digunakan dalam sistem deteksi banjir. Penelitian ini mengkategorikan status banjir dengan tiga label klasifikasi: "aman," "waspada," dan "bahaya". Dalam upaya membangun model prediksi status banjir, berbagai algoritma SVM seperti linear, polynomial, RBF, dan sigmoid diimplementasikan menggunakan dataset publik. Lalu akan diuji dengan alat deteksi banjir yang terdiri dari dari arduino uno, nodemcu, dan berbagai sensor seperti sensor ultrasonik, sensor debit air, sensor curah hujan, sensor suhu dan kelembaban. Evaluasi dilakukan melalui pengukuran akurasi, presisi, recall, F1-Score, kurva ROC, dan Cross-Validation. Hasil evaluasi menunjukkan bahwa model SVM dengan kernel polynomial terpilih sebagai model deteksi yang optimal dibandingkan dengan kernel lainnya. Model ini mencapai akurasi pelatihan dan pengujian sebesar 1.0, waktu pelatihan hanya 0.0012 detik, waktu prediksi 0.0002 detik, serta presisi, recall, dan F1-score sebesar 1.0. Selain itu, cross-validation juga mencapai 1.0 dalam mengklasifikasikan data banjir. Pengujian pada alat digunakan 131 data uji dengan hasil akurasi sebesar 1.0. Hasil klasifikasi dan data sensor disajikan melalui aplikasi Android, memudahkan dalam pemantauan banjir.
ANALISIS KUALITAS LAYANAN APLIKASI LINKAJA TERHADAP KEPUASAN PENGGUNA MENGGUNAKAN METODE E-SERVQUAL DAN KANO Ramadani, Ela; Hamzah, Muhammad Lutfhi; Syaifullah, Syaifullah; Saputra, Eki
Jurnal Inovtek Polbeng Seri Informatika Vol 9, No 1 (2024)
Publisher : P3M Politeknik Negeri Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35314/isi.v9i1.3814

Abstract

LinkAja merupakan bagian dari e-wallet yang merupakan layanan keuangan elektronik berbasis aplikasi yang bertujuan untuk memberikan kemudahan kepada pengguna memungkinkan pelanggan melakukan transaksi seperti pembelian, pembayaran, transfer,dan lainnya dengan cepat dan mudah. Hasil survey menunjukkan bahwa masalah pertama yang pengguna rasakan adalah sangat kecewa sistem error dan sering terjadi gangguan seperti saldo ada tapi tidak bisa mengirim kesesama pengguna ataupun ke rekening bank. Hasil dari perhitungan metode e-service quality pada setiap atribut masih memiliki rata-rata keseluruhan nilai gap negatif sebesar 0,800 yang berarti Q ≤ 1. Untuk hasil perhitungan kano, 11 atribut teridentifikasi sebagai kebutuhan pengguna yang jelas dan diharapkan dapat dipenuhi, diprioritaskan dan ditingkatkan dalam layanan, 10 atribut layanan perlu diimplementasikan, jika atribut tersebut terpenuhi maka pendapatan dari atribut tersebut dapat meningkatkan kepuasan pengguna yang tinggi walaupun kinerja atribut tersebut mengalami penurunan. Dan 6 atribut layanan yang dibutuhkan untuk mempengaruhi kepuasan pengguna dapat dilihat dari bagaimana layanan tersebut. Aplikasi LinkAja sudah cukup baik namun masih perlu dilakukan evaluasi dan perbaikan pada setiap layanannya agar dapat digunakan dengan lebih efisien. Tujuan penelitian ini adalah untuk menentukan tingkat kepuasan pengguna terhadap layanan yang ditawarkan oleh aplikasi LinkAja.
Penerapan Algoritma Cerdas Bidirectional Encoder Refresentations From Transformers Dalam Menganalisis Opini Publik Terhadap Produk Yang Mengalami Boikot Sulaeman, Asep Surahman; Sujjada, Alun; Kharisma, Ivana Lucia
Jurnal Inovtek Polbeng Seri Informatika Vol 9, No 1 (2024)
Publisher : P3M Politeknik Negeri Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35314/isi.v9i1.4252

Abstract

Social media, particularly Instagram, has become a primary platform for expressing opinions and participating in public discussions on various social, economic, and political issues. One of the prominent issues on social media is product boycotting. Boycotting a product can significantly impact the brand's image and sales. Famous brands such as McDonald’s, KFC, Starbucks, Burger King, and Pizza Hut are the main targets in boycott actions. This study uses a dataset of 1,750 comments from Instagram accounts on related products. The data is divided into two labels, positive and negative, based on automatic labeling from transformers and manual labeling. Sentiment analysis results show that McDonald’s has 41.43% positive sentiment and 58.57% negative sentiment, KFC has 85.14% positive and 14.86% negative, Starbucks has 97.71% positive and 2.29% negative, Burger King has 50% positive and negative, and Pizza Hut has 80.57% positive and 19.43% negative. Modeling results using the pre-trained Bidirectional Encoder Representation From Transformers (BERT) from Bert-Base-Uncased show accuracy results for McDonald’s products at 84.14%, KFC products at 95%, Starbucks products at 94.16%, Burger King products at 91.42%, and Pizza Hut products at 93.80%.
Perancangan dan Analisis Jaringan FTTB Berbasis Teknologi GPON Pada Bangunan Hotel Oktavianus, Yoppi Lisyadi; Elfitri, Ikhwana; Purbo, Onno Widodo
Jurnal Inovtek Polbeng Seri Informatika Vol 8, No 1 (2023)
Publisher : P3M Politeknik Negeri Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35314/isi.v8i1.3213

Abstract

This paper presents the design and implementation of a Fiber To The Building (FTTB) network infrastructure based on Gigabit Passive Optical Network (GPON) technology in a hotel cluster building located in West Sumatra, Indonesia. GPON technology was selected for its cost-effectiveness and efficiency in the distribution area, particularly when the terminal bandwidth is set at ≤500 Mbps. The waterfall method was utilized in the network's design. The results were tested and analyzed across three Open System Interconnection (OSI) layers: the physical layer, represented by the link power budget; the datalink layer, represented by the Traffic Container (T-CONT); and the network layer, represented by the QoS network performance. The link power budget showed a minimum received power of -16.41 dBm on the downlink and -18.95 dBm on the uplink, with a power margin value above zero. T-CONT has been implemented with the fixed bandwidth value set to provide a bandwidth guarantee meeting the minimum requirement of 1.1 Mbps. The network performance of the FTTB GPON demonstrated excellent performance, as per Internet Protocol Harmonization Over Network (TIPHON) standards, recording a latency of 1.18 ms, jitter of 0.18 ms, and zero packet loss
Rancang Bangun Sistem Realtime Notification Progress to Customer Berbasis Website Novtarina, Dita Aulia; Candra, Feri
Jurnal Inovtek Polbeng Seri Informatika Vol 9, No 1 (2024)
Publisher : P3M Politeknik Negeri Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35314/isi.v9i1.4199

Abstract

PT Agung Automall SM. Amin Pekanbaru is a branch of PT Agung Automall, a company operating in the automotive sector. PT Agung Automall SM. Amin, there are several divisions of work, one of which is the Body Paint (BP) division. Problems that arise in the Body Paint (BP) division is that the current system in Body Paint (BP) is less effective, it's because customers have difficulty knowing the progress of their cars. Customers are required to ask the service advisor to find out the progress of their car service. However, with a work system like this, human error often occurs, such as service advisors forgetting/being late in providing information on customer car service progress to customers. Therefore, a system is needed that can provide WhatsApp notifications of customer car service progress. This system uses the WhatsApp API to send notifications to customers. The design stages of this system use the prototype development method. This research produces a Website-based Realtime Notification Progress System that can be used by customers to see the progress of their car. Testing of this system was carried out using black box testing and showed that the system was running well.
Sistem Monitoring Keselamatan Kapal Nelayan Berbasis Internet Of Things Ratnawati, Fajar; Subandri, M. Asep; Afridon, M.
Jurnal Inovtek Polbeng Seri Informatika Vol 8, No 2 (2023)
Publisher : P3M Politeknik Negeri Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35314/isi.v8i2.3751

Abstract

Penelitian ini mengembangkan sebuah sistem monitoring keselamatan kapal nelayan berbasis Internet of Things (IoT) yang berfokus pada deteksi kemiringan dan lokasi kapal. Industri perikanan di Kabupaten Bengkalis menghadapi tantangan dalam keselamatan nelayan dan keberlanjutan sumber daya akibat kurangnya pemantauan real-time. Sistem yang diusulkan menggunakan modul GSM SIM808 dan sensor MPU6050, terintegrasi dengan platform Arduino, untuk memonitor secara real-time dan akurat posisi kapal serta kemiringannya. Informasi kemiringan kapal sangat kritikal dalam mencegah kecelakaan kapal yang sering terjadi karena ketidakstabilan kapal di tengah laut. Sistem ini memberikan peringatan dini kepada nelayan tentang kondisi yang berpotensi berbahaya, memungkinkan mereka untuk mengambil tindakan korektif sebelum terjadi kecelakaan.Selain itu, pemantauan lokasi kapal memastikan bahwa kapal berada dalam zona penangkapan yang aman dan mematuhi regulasi perikanan, sekaligus memungkinkan pihak berwenang untuk melakukan penyelamatan secara cepat dalam kasus darurat. Sistem juga mendukung nelayan dalam mengoptimalkan rute penangkapan untuk meningkatkan efisiensi bahan bakar dan hasil tangkapan. Dengan demikian, penelitian ini tidak hanya berkontribusi terhadap keselamatan nelayan tetapi juga efisiensi operasional dan keberlanjutan sumber daya perikanan di Bengkalis.
PREDIKSI NILAI PENGADAAN BARANG DAN JASA PADA SEBUAH PERUSAHAAN PARIWISATA MENGGUNAKAN METODE ARIMA DAN FUZZY TIME SERIES Wati, Lisna; Solichin, Achmad
Jurnal Inovtek Polbeng Seri Informatika Vol 9, No 1 (2024)
Publisher : P3M Politeknik Negeri Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35314/isi.v9i1.4041

Abstract

PT XYZ does not have a tested evaluation metric to measure the accuracy of procurement prediction models. This research aims to find a suitable metric by comparing two methods: Autoregressive Integrated Moving Average (ARIMA) and Fuzzy Time Series (FTS). Both methods were chosen based on the ability of ARIMA to handle time patterns and trends, and the flexibility of FTS in dealing with uncertainty in procurement values. The research uses Root Mean Squared Error (RMSE) values to measure prediction accuracy. The ARIMA implementation analyzes historical data to forecast patterns, while FTS accommodates fluctuations and uncertainties, allowing for more adaptive and accurate predictions. The analysis results show that the ARIMA model has an AIC value of 3953.57 and a residual value of 3351745.26, while FTS has a residual of -224.79. The RMSE evaluation shows the ARIMA value of 3351745.30 and FTS of 224793895.00. The predicted value of ARIMA is 440,326,255, while FTS is 668,471,895. Based on these results, FTS shows superior prediction accuracy compared to ARIMA. FTS is recommended to be implemented at PT XYZ due to its ability to effectively manage uncertainty and fluctuations in procurement values, enabling more accurate strategic decisions. Further research is needed to understand the factors that influence the performance difference between these two methods.