cover
Contact Name
Andy Sapta
Contact Email
sapta@royal.ac.id
Phone
-
Journal Mail Official
lppm_stmik@royal.ac.id
Editorial Address
-
Location
Kab. asahan,
Sumatera utara
INDONESIA
JURTEKSI
Published by STMIK Royal Kisaran
ISSN : 24071811     EISSN : 25500201     DOI : -
Core Subject : Science,
JURTEKSI (Jurnal Teknologi dan Sistem Informasi) is a scientific journal which is published by STMIK Royal Kisaran. This journal published twice a year on December and June. This journal contains a collection of research in information technology and computer system.
Arjuna Subject : -
Articles 685 Documents
MICROCONTROLLER IMPLEMENTATION ON ULTRASONIC SENSOR BASED AUTOMATIC TRASH CAN SYSTEM Wanayumini, Wanayumini; Isnaini, Fitri; lvindra, Farhan A; Wardana, Revo
JURTEKSI (Jurnal Teknologi dan Sistem Informasi) Vol 11, No 1 (2024): Desember 2024
Publisher : Universitas Royal

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i1.3646

Abstract

Abstract : Waste management in Sei Beluru Village faces challenges due to population growth and increasing waste volume. This research aims to design and implement an automatic waste bin system based on microcontroller using Arduino Uno. The research uses experimental method with hardware and software development stages including system design, component integration, and testing. The developed system integrates HCSR-04 sensors for waste volume detection, infrared sensors for object presence detection, and servo motors for automatic opening-closing mechanism. Test results show that the system successfully detects waste levels with high accuracy and operates the opening-closing mechanism effectively. The implementation of this system proves effective in optimizing waste management in Sei Beluru Village by reducing physical interaction and preventing waste accumulation. Keywords : arduino uno; HCSR-04 sensor; automatic waste bin; HCSR-04 sensor; microcontroller; waste management.  Abstract : Waste management in Sei Beluru Village faces challenges due to population growth and increasing waste volume. This research aims to design and implement an automatic waste bin system based on microcontroller using Arduino Uno. The research uses experimental method with hardware and software development stages including system design, component integration, and testing. The developed system integrates HCSR-04 sensors for waste volume detection, infrared sensors for object presence detection, and servo motors for automatic opening-closing mechanism. Test results show that the system successfully detects waste levels with high accuracy and operates the opening-closing mechanism effectively. The implementation of this system proves effective in optimizing waste management in Sei Beluru Village by reducing physical interaction and preventing waste accumulation. Keywords : arduino uno; HCSR-04 sensor; automatic waste bin; HCSR-04 sensor; microcontroller; waste management. 
COMPARATIVE STUDY OF FP - GROWTH AND APRIORI IN GROCERY ANALYSIS Adi, Ahmad Cahyono
JURTEKSI (Jurnal Teknologi dan Sistem Informasi) Vol 11, No 1 (2024): Desember 2024
Publisher : Universitas Royal

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i1.3164

Abstract

Abstract: The growing business environment causes the business world to create in order to continue to survive, one of which is by increasing sales. One way is to use the data approach. One method of data approach that is widely used is Market Basket Analysis. This study uses the Market Basket Analysis method with the a priori algorithm and FP-Growth. Grocery dataset analysis using two algorithms, Apriori and FP-Growth using a minimum support parameter of 0.45, has results sorted by the top 10 associations with the best confidence value. The association with the highest support value found is "Whole Milk -> Other Vegetables" with a support value of 0.0748347737. The analysis concludes that both algorithms produce the same association "Other Vegetables -> Whole Milk" with a Support value of 0.0748347737.             Keywords: apriori; FP-Growth; market basket analysis.  Abstrak : Lingkungan bisnis yang semakin berkembang menyebabkan dunia bisnis harus berkreasi agar dapat terus bertahan, salah satunya dengan cara meningkatkan penjualan. Salah satu caranya adalah dengan menggunakan pendekatan data. Salah satu metode pendekatan data yang banyak digunakan adalah Market Basket Analysis. Penelitian ini menggunakan metode Market Basket Analysis dengan algoritma apriori dan FP-Growth. Analisis dataset grosir menggunakan dua algoritma, Apriori dan FP-Growth dengan menggunakan parameter support minimum 0,45, memiliki hasil yang diurutkan berdasarkan 10 asosiasi teratas dengan nilai confidence terbaik. Asosiasi dengan nilai support tertinggi yang ditemukan adalah “Whole Milk -> Other Vegetables” dengan nilai support sebesar 0,0748347737. Analisis menyimpulkan bahwa kedua algoritma tersebut menghasilkan asosiasi yang sama “Other Vegetables -> Whole Milk” dengan nilai Support sebesar 0,0748347737. Kata Kunci: apriori; FP-Growth; market basket analysis 
CLOTHING SALES STRATEGY AT ANEKATEX SHOP WITH E-CRM CONCEPT Pratiwi, Winda; Amin, Muhammad; Putri, Pristiyanilicia
JURTEKSI (Jurnal Teknologi dan Sistem Informasi) Vol 11, No 1 (2024): Desember 2024
Publisher : Universitas Royal

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i1.3365

Abstract

Toko Anekatex is a business engaged in fashion for women, men, children, as well as school uniforms, pajamas, and other robes located on Jalan Dr. Sutomo No. 41 Kisaran city. In maintaining more advanced competitiveness, the company must continue to develop technology, another thing that needs to be considered in making the company more advanced is the relationship with customers which is also an important thing to always maintain. In an effort to manage good relationships with potential customers and customers, companies use Customer Relationship Management (CRM). CRM is a service to customers that is personal, with the aim of providing consistent experience, so that it can provide customer satisfaction, and also get good relationships in the long term. By implementing a good E-CRM, companies will more easily interact with potential customers and customers and provide information according to their needs Customers can also obtain the information they need more quickly and easily. By implementing Customer Relationship Management (CRM) carried out at Anekatex Stores as an effort to improve customer strategies are well proven by the series of processes above and with this application to increase buybacks from total sales every month.
IMPLEMENTATION OF THE FUZZY LOGIC METHOD TO DETERMINE EMPLOYEE ASSESSMENT Siregar, Agus Trinanda; Andrianto, Richi; Rahayu Putri, Perra Budiarti
JURTEKSI (Jurnal Teknologi dan Sistem Informasi) Vol 11, No 1 (2024): Desember 2024
Publisher : Universitas Royal

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i1.3446

Abstract

Abstract: Performance assessment is the process of measuring an organization in achieving predetermined goals. Performance assessment can also be interpreted as periodically determining the operational effectiveness of an organization and its personnel, based on the vision, mission and organizational standards that have been previously established. Performance appraisals are carried out between superiors and subordinates, looking at the employee's work results in the last year. Employee performance assessment at the North Padang Lawas Regency PUPR Service still uses a manual system so that the files are not arranged quickly and employee performance assessment still uses calculations with Microsoft Excel. With this problem, the fuzzy logic method is used. The fuzzy method is used to obtain the best employee performance assessment, with 3 criteria to produce the greatest value selected. This research aims to design an employee performance assessment application using the fuzzy method, to obtain recommendations for promotion. The test results of 8 people had sufficient value and 2 people had low value. For low-ranking employees, they will be given sanctions and reprimands by their superiors, while for employees with sufficient value, their performance must be improved to be even better. Keywords: fuzzy logic; performance; assessment; employee;  Abstrak: Penilaian kinerja merupakan proses pengukuran organisasi dalam mencapai tujuan yang telah ditetapkan. Penilaian kinerja dapat juga diartikan sebagai penentuan secara periodik efektivitas operasional suatu organisasi, dan personilnya, berdasarkan visi, misi dan standar organisasi yang telah ditetapkan sebelumnya. Penilaian kinerja dilakukan antara atasan dengan bawahan, melihat hasil kerja pegawai dalam setahun terakhir. Penilaian kinerja pegawai pada Dinas PUPR Kabupaten Padang Lawas Utara masih menggunakan sistem manual sehingga berkas-berkas file tidak tersusun secara rapid dan penilaian kinerja pegawai masih menggunakanperhitungan dengan microsoft excel.Dengan permasalahah tersebut menggunakan metode fuzzy logic. Metode fuzzy digunakan dalam mendapatkan penilaian kinerja pegawai terbaik, dengan 3 kriteria untuk menghasilkan nilai terbesar yang terpilih. Penelitian ini bertujuan untuk merancang aplikasi penilaian kinerja karyawan dengan metode fuzzy, untuk mendapatkan rekomendasi kenaikan jabatan. Hasil tes dari 8 orang memiliki nilai cukup dan 2 orang memiliki nilai rendah. Bagi pegawai yang memiliki nilai rendah akan diberikan sanksi dan teguran oleh atasannya, sedangkan bagi pegawai yang memiliki nilai cukup, kinerjanya harus ditingkatkan agar lebih baik lagi. Kata kunci: fuzzy logic; penilaian; kinerja; pegawai
COMPARATIVE ANALYSIS OF K-MEANS, X-MEANS AND K-MEDOIDS IN CLASSIFYING MARRIAGE CHOICED ADMIST QUARTER-LIFE CRISIS Ariza, Disya Nurul; Ningsih, Rahayu; Muryani, Sri; Ferliyanti, Herlina; Wahidin, Ahmad Jurnaidi
JURTEKSI (Jurnal Teknologi dan Sistem Informasi) Vol 11, No 1 (2024): Desember 2024
Publisher : Universitas Royal

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i1.3554

Abstract

Abstract: Bekasi Regency, being one of the key cities in Indonesia, offers a suitable setting to study the intricacies of marriage decision-making during a quarter-life crisis. This study focuses on the application of clustering algorithms to categorize individuals based on their marriage choices. Data was collected from a questionnaire completed by 110 respondents from Bekasi Regency, specifically individuals aged 18 to 30 who are single, including 80 women and 30 men. Data analysis was conducted using the RapidMiner software to evaluate the effectiveness of three clustering algorithms K-Means, X-Means, and K-Medoids in categorizing marriage decision patterns among young people experiencing a Quarter Life Crisis in Bekasi Regency. Results indicate that each algorithm has its own strengths and limitations in handling Quarter Life Crisis data.The results of the analysis show that the K-medoids algorithm provides the best clustering results with the lowest DBI value of 0.195, followed by the X-Means algorithm with a value of 0.199 and K-Means with a value of 0.207. These results can help understand the pattern of marriage decisions in the Quarter Life Crisis phase and help provide insights for policymakers in Bekasi Regency to make more effective intervention programs.            Keywords: K-Means; K-Medoids; X-Means  Abstrak: Sebagai salah satu kota besar di Indonesia, Kabupaten Bekasi memberikan konteks yang tepat untuk mempelajari kompleksitas pengambilan keputusan pernikahan di tengah krisis seperempat usia. Penelitian ini berfokus pada pemanfaatan algoritma clustering untuk mengelompokkan individu berdasarkan pilihan pernikahan mereka. Data diambil dari kuesioner yang diisi oleh 110 responden di Kabupaten Bekasi, yang terdiri dari individu lajang berusia 18 hingga 30 tahun, yaitu 80 perempuan dan 30 laki-laki. Analisis data dilakukan dengan perangkat lunak RapidMiner untuk mengevaluasi efektivitas tiga algoritma pengelompokan—K-Means, X-Means, dan K-Medoids—dalam mengelompokkan pola keputusan pernikahan di kalangan pemuda yang menghadapi Quarter Life Crisis di Kabupaten Bekasi. Hasilnya menunjukkan bahwa setiap algoritma memiliki keunggulan dan kelemahannya masing-masing dalam memproses data Quarter Life Crisis. Hasil analisis menunjukkan bahwa algoritma K-medoids memberikan hasil clustering terbaik dengan nilai DBI terendah yaitu 0.195, diikuti oleh algoritma X-Means dengan nilai 0.199 dan K-Means dengan nilai 0.207. Hasil ini dapat membantu memahami pola keputusan menikah pada fase Quarter Life Crisis dan membantu memberikan wawasan bagi pembuat kebijakan di Kabupaten Bekasi membuat program intervensi yang lebih efektif.  Kata kunci: K-Means; K-Medoids; X-Means 
APPLICATION SAW METHOD FOR GENERAL CHAMPION STUDENTS SMP NEGERI 3 KISARAN Nabila, Inaya; Ramdhan, William; Kifti, Wan Mariatul
JURTEKSI (Jurnal Teknologi dan Sistem Informasi) Vol 11, No 1 (2024): Desember 2024
Publisher : Universitas Royal

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i1.3100

Abstract

Abstract: Schools become educational institutions in supporting the teaching and learning process to increase student potential. In the world of education, determining the best students is still an obstacle that is often faced such as subjectivity assessment resulting in diverse mindsets. SMP Negeri 3 Kisaran which is located at Jalan Madong Lubis, Selawan, East Kisaran District, Asahan Regency. The process of determining the overall champion students still relies on conventional assessments by manual means so that it requires a long assessment time, assessment is also subjective, this tends to limit recognition of diverse student potential. The purpose of this study is to design a decision support system application in determining the overall champion students at SMP Negeri 3 Kisaran with specified criteria. The SAW method is used as a weighted summation method of the performance of each alternative across all attributes. The best alternative decision result as the General Champion Student of class IX in the Odd Semester of 2023/2024 at SMP Negeri 3 Kisaran is Naurah Ghaisani Lubis with a score of 0.906. Based on these results, it can help SMP Negeri 3 Kisaran in determining the overall champion students and become a reference in decision making.Keywords: decision support system; simple addictive weighting; general champion students Abstrak: Sekolah menjadi institusi pendidikan dalam mendukung proses belajar mengajar untuk meningkatkan potensi siswa. Dalam dunia pendidikan menentukan siswa terbaik masih menjadi kendala yang sering dihadapi seperti penilaian secara subjektivitas mengakibatkan pola pikir yang beragam. SMP Negeri 3 Kisaran yang beralamatkan di Jalan Madong Lubis, Selawan, Kecamatan Kisaran Timur, Kabupaten Asahan. Proses penentuan siswa juara umum masih mengandalkan penilaian konvensional dengan cara manual sehingga membutuhkan waktu penilaian yang cukup lama, penilaian juga bersifat subjektif, hal ini cenderung membatasi pengakuan atas potensi siswa yang beragam. Tujuan penelitian ini untuk merancang aplikasi sistem pendukung keputusan dalam menentukan siswa juara umum di SMP Negeri 3 Kisaran dengan kriteria yang ditentukan. Metode SAW digunakan sebagai metode penjumlahan terbobot dari kinerja setiap alternatif di semua atribut. Hasil keputusan alternatif terbaik sebagai Siswa Juara Umum kelas IX pada Semester Ganjil Tahun 2023/2024 di SMP Negeri 3 Kisaran adalah Naurah Ghaisani Lubis dengan nilai 0.906. Berdasarkan hasil tersebut dapat membantu pihak SMP Negeri 3 Kisaran dalam menentukan siswa juara umum dan menjadi acuan dalam pengambilan keputusan.Kata Kunci: sistem pendukung keputusan; simple addictive weighting; siswa juara umum
AUTOMATIC SPEECH RECOGNITION (ASR) BASED ON PROGRESSIVE WEB APPS TO DEVELOP PRONUNCIATION LEARNING Iqbal, Muhammad
JURTEKSI (Jurnal Teknologi dan Sistem Informasi) Vol 11, No 1 (2024): Desember 2024
Publisher : Universitas Royal

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i1.3635

Abstract

Abstract: Good pronunciation plays a crucial role in enhancing students' confidence, encouraging active participation in learning, and preparing them for academic and professional opportunities, such as English-language interviews. Poor pronunciation during scholarship or job interviews can hinder the interviewer's understanding, thereby reducing the chances of acceptance. This study aims to improve students' pronunciation fluency and develop a learning medium based on Automatic Speech Recognition (ASR) technology. The method employed involves the development of Progressive Web Apps (PWA) integrated with ASR technology from the app.lumi.education platform, supported by manual labeling for pronunciation validation. The research was conducted at LKP Vijaya Learning Centre, Tanjungbalai City. The results demonstrate that ASR-based media significantly enhances students' pronunciation accuracy and confidence. Thus, the integration of ASR technology into PWA effectively supports innovative and efficient pronunciation learning.            Keywords: automatic speech recognition; language learning; pronunciation; web-based application.  Abstrak: Pengucapan yang baik berperan penting dalam meningkatkan kepercayaan diri siswa, mendorong partisipasi aktif dalam pembelajaran, dan mempersiapkan mereka menghadapi peluang akademik maupun profesional, seperti wawancara berbahasa Inggris. saat menghadapi wawancara beasiswa atau pekerjaan berbahasa Inggris, pengucapan yang buruk dapat mengurangi pemahaman pewawancara, sehingga mengurangi peluang diterima. Penelitian ini bertujuan untuk meningkatkan kelancaran pengucapan siswa dan mengembangkan media pembelajaran berbasis teknologi Automatic Speech Recognition (ASR). Metode yang digunakan adalah pengembangan Progressive Web Apps (PWA) yang terintegrasi dengan ASR dari aplikasi app.lumi.education, didukung oleh pelabelan manual untuk validasi pengucapan. Penelitian dilakukan di LKP Vijaya Learning Centre, Kota Tanjungbalai. Hasil penelitian menunjukkan bahwa media berbasis ASR secara signifikan meningkatkan akurasi pengucapan dan kepercayaan diri siswa. Dengan demikian, integrasi teknologi ASR dalam PWA terbukti mendukung pembelajaran pengucapan secara inovatif dan efisien.Kata kunci: aplikasi berbasis web; pengenalan suara otomatis; pembelajaran bahasa; pengucapan
ANDROID-BASED SMART SYSTEM FOR FRUIT SELECTION TO PREVENT TODDLER STUNTING Riansah, Wahyu; Lumban Gaol, Nur Yanti
JURTEKSI (Jurnal Teknologi dan Sistem Informasi) Vol 11, No 1 (2024): Desember 2024
Publisher : Universitas Royal

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i1.3502

Abstract

Abstract: Preventing stunting in toddlers is crucial for improving children's health and growth. Stunting occurs due to chronic nutritional deficiencies during the first 1,000 days of a child's life, affecting their height, cognitive development, and immune system, which can reduce their future potential. Fruits play an important role in a toddler's diet because they are rich in vitamins, minerals, fiber, antioxidants, and other bioactive compounds that support physical growth and brain development. However, selecting the right fruits is vital because some fruits can cause digestive issues or allergies in toddlers. To assist parents in choosing the right fruits, a mobile-based expert system using the Certainty Factor method has been developed. This system provides recommendations based on the toddler's health condition and evaluates the nutritional content of fruits. With this system, parents can ensure that their toddlers receive optimal nutrition, contributing to stunting prevention and ensuring that the toddlers grow up healthy, intelligent, and with full potential in the future Choosing the right fruits and maintaining a balanced nutrition are crucial parts of supporting the sustainability of stunting prevention efforts.            Keywords: certainty factor method; expert system; fruit selection; stunting prevention; toddler nutrition  Abstrak: Pencegahan stunting pada batita sangat penting untuk meningkatkan kualitas kesehatan dan pertumbuhan anak. Stunting terjadi akibat kekurangan gizi kronis pada 1.000 hari pertama kehidupan batita, memengaruhi tinggi badan, perkembangan kognitif, dan sistem imun anak, yang berisiko mengurangi potensi masa depan mereka. Buah-buahan memiliki peran penting dalam pola makan batita, karena kaya akan vitamin, mineral, serat, antioksidan, dan senyawa bioaktif yang mendukung pertumbuhan fisik dan perkembangan otak. Namun, pemilihan buah yang tepat sangat penting karena beberapa buah dapat menyebabkan masalah pencernaan atau alergi pada batita. Untuk membantu orang tua dalam memilih buah yang sesuai, dikembangkan sistem pakar berbasis mobile dengan metode Certainty Factor. Sistem ini memberikan rekomendasi berdasarkan kondisi kesehatan batita, serta mengevaluasi kandungan nutrisinya. Dengan sistem ini, orang tua dapat memastikan bahwa batita mendapatkan nutrisi yang optimal dengan berkontribusi dalam pencegahan stunting dengan memastikan batita tumbuh sehat, cerdas, dan memiliki potensi penuh di masa depan. Pemilihan buah yang tepat dan nutrisi yang seimbang menjadi bagian penting dalam mendukung upaya keberlanjutan pencegahan stunting. Kata kunci: batita; metode certainty factor; pemilihan buah; pencegahan stunting; sistem cerdas  
IMPLEMENTATION OF K-NEAREST NEIGHBOR ALGORITHM FOR CLASSIFICATION OF LUNG CANCER CAUSES Almeyda, Hanindiya Putri; Khoiri, Zidan Fathannul; Haris, M Sabirin; Alkaff, Nabilah Husen; Sukmadiningtyas, Sukmadiningtyas
JURTEKSI (Jurnal Teknologi dan Sistem Informasi) Vol 11, No 1 (2024): Desember 2024
Publisher : Universitas Royal

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i1.3305

Abstract

Abstract: Lung cancer is most deadly cancers in the world. Identification and classification of the causes of understanding lung cancer is essential for developing more effective prevention and treatment strategies. The issue is that a lot of individuals are unaware about the characteristics and causes of lung cancer. The purpose of this study is to apply the K-Nearest Neighbor (K-NN) algorithm in the classification of the causes of lung cancer and provide education to the public must be aware of the traits of lung cancer patients and, to stay away from the causes of lung cancer. The dataset used consists of 309 samples with 16 relevant attributes. The K-NN algorithm was trained and tested to assess its ability to classify the factors that cause lung cancer. The results showed an accuracy of 90.32%, with a precision for the "YES" class of 96% and the "NO" class of 67%. The recall value for the "YES" class was 92% and for the "NO" class was 80%. The implementation of this algorithm gives good results in classification and can help in early detection and prevention of lung cancer which can be used in the development of more effective prevention and early diagnosis strategies. Keywords: lung cancer; k-nearest neighbor; classification; machine learning  Abstrak: Kanker paru-paru tergolong jenis penyakit kanker yang memperoleh angka kematian paling tinggi di dunia. Identifikasi dan klasifikasi penyebab kanker paru-paru sangat penting untuk pengembangan strategi pencegahan dan pengobatan yang lebih efektif. Masalah yang terjadi adalah banyak orang yang belum mengetahui tentang ciri-ciri dan penyebab-penyebab dari kangker paru tersebut. Tujuan penelitian ini adalah mengimplementasikan algoritma K-Nearest Neighbor (K-NN) dalam klasifikasi penyebab kanker paru-paru serta memberikan edukasi kepada masyarakat banyak agar mengetahui ciri-ciri orang yang mengidap kangker paru-paru dan tentunya untuk menghindari penyebab-penyebab dari kangker paru-paru tersebut. Dataset yang digunakan terdiri dari 309 sampel dengan 16 atribut yang relevan. Algoritma K-NN kemudian dilatih dan diuji untuk menilai kemampuannya dalam mengklasifikasikan faktor-faktor penyebab kanker paru-paru. Hasil penelitian menunjukkan akurasi sebesar 90.32%, dengan skor precision untuk kelas "YES" sebesar 96% dan kelas "NO" sebesar 67%. Nilai recall untuk kelas "YES" adalah 92% dan untuk kelas "NO" sebesar 80%. Implementasi algoritma ini memberikan hasil yang baik dalam klasifikasi dan dapat membantu dalam deteksi dini serta pencegahan kanker paru-paru yang dapat digunakan dalam pengembangan strategi pencegahan dan diagnosis dini yang lebih efektif. Kata kunci: kanker paru-paru; k-nearest neighbor; klasifikasi; machine learning
IMPLEMENTATION OF FUZZY MODEL TAHANI IN DECISION SUPPORT SYSTEM FOR OPTIMAL PRODUCTION SCHEDULING Rizaldi, Rizaldi; Syah, Arridha Zikra; Muhazir, Ahmad
JURTEKSI (Jurnal Teknologi dan Sistem Informasi) Vol 11, No 1 (2024): Desember 2024
Publisher : Universitas Royal

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i1.3588

Abstract

Abstract: In the manufacturing industry, production scheduling become an important aspect that affects operational efficiency and customer satisfaction. The main challenge in scheduling is optimizing the use of resources to meet demand by minimizing production costs and time. Suboptimal scheduling can lead to problems such as delays in stocking, stock buildup, and increased operational costs. Thus, a method can to handle the complexity and uncertainty in the production process is needed. The Fuzzy Tahani Model is an approach in decision support systems. this can be used to help companies achieve more efficient and adaptive production scheduling, to consider various variables such as demand, production capacity, and inventory levels. This research aims to develop and implement the model in the context of production scheduling, with the hope of improving operational performance and customer satisfaction. At this time, the proposed Fuzzy Model Tahani technology is in TKT 4, which is the validation stage of technology components in a laboratory environment. The system creates an optimal production schedule based on fuzzy rules and defuzzification results, making it a useful tool for production decisions.Keywords:  fuzzy model tahini; decision support system; production optimization; production scheduling.  Abstrak: Dalam industri manufaktur, penjadwalan produksi adalah aspek penting yang mempengaruhi efisiensi operasional dan kepuasan pelanggan. Tantangan utama dalam penjadwalan adalah mengoptimalkan penggunaan sumber daya untuk memenuhi permintaan dengan meminimalkan biaya dan waktu produksi. Penjadwalan yang tidak optimal dapat menyebabkan masalah seperti keterlambatan pengiriman, penumpukan stok, dan peningkatan biaya operasional. Oleh karena itu, diperlukan suatu metode yang mampu menangani kompleksitas dan ketidakpastian dalam proses produksi. Fuzzy Model Tahani adalah salah satu pendekatan yang dapat digunakan dalam sistem pendukung keputusan untuk membantu perusahaan mencapai penjadwalan produksi yang lebih efisien dan adaptif, dengan mempertimbangkan berbagai variabel seperti permintaan, kapasitas produksi, dan tingkat persediaan. Penelitian ini bertujuan untuk mengembangkan dan mengimplementasikan model tersebut dalam konteks penjadwalan produksi, dengan harapan dapat meningkatkan performa operasional dan kepuasan pelanggan. Pada saat ini, teknologi Fuzzy Model Tahani yang diusulkan berada pada TKT 4, yaitu tahap validasi komponen teknologi dalam lingkungan laboratorium. Sistem ini menciptakan jadwal produksi yang optimal berdasarkan aturan fuzzy dan hasil defuzzifikasi, menjadikannya alat yang berguna untuk pengambilan keputusan produksi.Kata kunci: fuzzy model tahani; optimasi produksi; penjadwalan produksi; sistem pendukung keputusan.