cover
Contact Name
Rochmat Aldy Purnomo
Contact Email
purnomo@umpo.ac.id
Phone
-
Journal Mail Official
multitek@umpo.ac.id
Editorial Address
-
Location
Kab. ponorogo,
Jawa timur
INDONESIA
Multitek Indonesia : Jurnal Ilmiah
ISSN : 19076223     EISSN : 25793497     DOI : -
Multitek Indonesia : Jurnal Ilmiah is a journal published by the Technic Faculty, Universitas Muhammadiyah Ponorogo (Unmuh Ponorogo) in collaboration with Universitas Muhammadiyah Ponorogo Research and Community Service. Published twice a year (June and Desember), contains six to ten articles and receive articles in the field of technic review studies with research methodologies that meet the standards set for publication. Manuscript articles can come from researchers, academics, practitioners, and other technic observers who are interested in research in the field of tehnic.
Arjuna Subject : -
Articles 190 Documents
PERANCANGAN DAN PENGUJIAN ALAT SENSOR PH SERTA SUHU BERBASIS INTERNET OF THINGS UNTUK MONITORING LIMBAH INDUSTRI TAHU Pinandhita, Aqli Supremadi Naufal; Shobirin, Rizky Arief; Shalahuddin, Yanu; Srikalimah, Srikalimah
MULTITEK INDONESIA Vol 17, No 1 (2023): Juli
Publisher : Universitas Muhammadiyah Ponorogo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24269/mtkind.v17i1.6836

Abstract

Tofu wastewater has negative impact on the river ecosystems and local residents because its smell and acidity. Therefore, this research aimed to design tools and test pH and temperature sensors based on Internet of Things (IoT) for monitoring the results of the installation of tofu waste wastewater treatment (WWTP) system in real time as wastewater quality monitoring system development thus it capable for wastewater monitoring intensively. Methodology of this research was experimentally for designing monitoring tools, which at tool design stage using an ESP 8266 microcontroller, pH4502c and DS18B20 as pH and temperature sensors, respectively. And also, it was communicated with Arduino IDE and Blynk software to create program code on the microcontroller and as monitoring on the computer server and smartphones, respectively. The used statistical compatibility test was percentage error, validity and reliability tests based on the monitoring tool data response to observed its suitability of the wastewater monitoring tool set for sustainability in home industries. In the %error test, there were results in reading values by the pH and temperature sensor of 0.92-1.45% in the tofu waste and whole neutralization, coagulation, sedimentation and filtration compartments; however, there was %error result of 0.92-7.31% on the pH sensor for the tofu wastewater tub. There were very valid and reliable results on tofu waste and whole compartments of the WWTP. Based on these results, the wastewater monitoring tools set was declared suitable for continuous use in the tofu industry with recommendations for routine calibration at least every 3 days of use.
ESTIMASI SUDUT DAN AMPLITUDO DARI ARAH KEDATANGAN SINYAL RADAR MIMO DENGAN APPROXIMATION MAXIMUM LIKELIHOOD Ashar, Ashar; Tahcfulloh, Syahfrizal
MULTITEK INDONESIA Vol 17, No 2 (2023): Desember
Publisher : Universitas Muhammadiyah Ponorogo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24269/mtkind.v17i2.4406

Abstract

Abstrak Penentuan jumlah parameter target dari suatu sistem radar sangat ditentukan dari kemampuan estimasi arah kedatangan sinyal target. Hal ini amat bergantung pada tingkat akurasi dan resolusi deteksi arah dari estimasi tersebut terutama untuk target-target yang saling berdekatan. Estimasi arah kedatangan sinyal ini sangat besar dipengaruhi oleh estimasi radar-cross section (RCS) dari target. RCS ini proporsional dengan keberadaan target yang nantinya berimbas pada penentuan jumlah target terdeteksi. Banyak sekali pendekatan untuk mengestimasi hal tersebut pada radar multiple-input multiple-output (MIMO) salah satunya approximation maximum likelihood (AML). Makalah ini akan memberikan penurunan formulasi dan evaluasi dari estimasi parameter dengan pendekatan AML untuk sistem radar MIMO yang sekaligus juga membandingkannya dengan radar konvensional seperti phased-array (PA). Untuk menunjukkan keefektifan kinerja dari estimasi AML terhadap radar-radar tersebut maka akan dibandingkan dengan implementasi pendekatan sebelumnya seperti least squares (LS) dalam hal seperti magnitudo dari RCS, jumlah sudut kedatangan yang proporsional dengan jumlah target terdeteksi, dan jumlah elemen antena di transmitter (Tx) dan receiver (Rx) dari sistem radar. Berdasarkan dari hasil evaluasi untuk jumlah elemen antena Tx-Rx dengan 10 elemen, resolusi sudut deteksi untuk estimator AML yang diusulkan pada radar MIMO ternyata unggul dibanding estimator LS dengan resolusi sudut berturut-turut adalah 5,8 dan 2 dalam satuan derajat. Abstract Determining the number of target parameters for a radar system is largely determined by the ability to estimate the direction of arrival of the signal from the target. This is very dependent on the accuracy and detection resolution of the estimated direction of arrival, especially for targets that are close to each other. The estimated direction of arrival of this signal is greatly influenced by the estimated radar-cross section (RCS) of the target. This RCS is proportional to the presence of targets which will have an impact on determining the number of targets detected. There are many approaches to estimate this on multiple-input multiple-output (MIMO) radar, one of which has high angular detection resolution is approximation maximum likelihood (AML). This paper will provide a formulation and evaluation of parameter estimation using this approach for MIMO radar systems while also comparing it with conventional radars such as phased-array (PA). To show the effectiveness of the performance of the proposed estimate for these radars, it will be compared with the implementation of previous approaches such as least squares (LS) in terms such as the magnitude of the RCS, the number of angles of arrival proportional to the number of targets detected, and the number of antenna elements in the transmitter (Tx) and receiver (Rx) of the radar system. Based on the evaluation results for the number of Tx-Rx antenna elements with 10, the detection angle resolution for the proposed estimator on the MIMO radar turns out to be superior to the LS estimator with an angle resolution of 5.8 and 2 in degrees, respectively. 
DETEKSI KUALITAS SUSU SAPI MURNI BERDASARKAN WARNA, TINGKAT KEASAMAN dan KANDUNGAN GAS MENGGUNAKAN METODE K-NEARS NEIGHBOR dan DECISION TREE andoko, aisyah fadilah
MULTITEK INDONESIA Vol 18, No 1 (2024): Juli
Publisher : Universitas Muhammadiyah Ponorogo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24269/mtkind.v18i1.8729

Abstract

 Susu sapi memiliki kandungan nutrisi yang baik untuk dikonsumsi. Susu sapi memiliki tekstur yang lembut, kental serta berwarna putih bersih. Tingkat kesegaran susu ditentukan setelah susu tersebut diambil. Kualitas Susu sapi menjadi tolak ukur menentukan kualitas susu sapi yang dipilih konsumen. Sebab ada berita memaparkan bahwa sering terjadinya keracunan pada anak kecil akibat mengkonsumsi susu yang sudah tidak layak. Dengan adanya permasalahan tersebut penelitian ini bertujuan membantu konsumen menentukan susu sapi yang baik. Dalam menentukan kualitas susu sapi pada penelitian ini menggunakan Sensor pH untuk mendeteksi tingkat keasamannya, Sensor Gas pendeteksi kandungan gas, serta Kamera sebagai pendeteksi perubahan warna. Hasil dari nilai tersebut diolah menggunakan  metode K-Nears Neigbor dan Decision Tree untuk menentukan kualitas dari susu sapi murni. Dimana pada metode  K-Nears Neigbor sebagai penentu kualitas warna susu serta metode Decision Tree sebagai penentu akhir kualitas susu apakah ba ik atau buruk konsumsi. Penelitian ini menghasilkan akurasi pengujian sensor berdasarkan metode K-Nears Neigbor untuk klasifikasi warna susu sapi yaitu warna susu yang berwarna putih 88,6% dan akurasi warna putih kekuningan 96,2%. Sedangkan hasil pengujian kualitas susu sapi berdasarkan metode decision tree menghasilkan  akurasi kualitas susu sapi yang baik 86% dan akurasi pada kualitas susu sapi yang buruk 84%.
GOLDFISH AQUARIUM WATER QUALITY CONTROL AND MONITORING SYSTEM USING FLC Santoso, Budi; Panuntun, Wisnuning Diah
MULTITEK INDONESIA Vol 18, No 2 (2024): Desember
Publisher : Universitas Muhammadiyah Ponorogo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24269/mtkind.v18i2.9618

Abstract

Goldfish is a unique type of carp. Its interesting shape makes it popularly kept by people as a hobby or business. In goldfish farming, it is necessary to manage water quality properly to meet the required water quality criteria to support their life. In this study, a water quality monitoring and control system was developed so that breeders can observe water quality conditions online, and the water quality control process can be carried out automatically. The system utilizes two sensors, namely turbidity sensor and pH sensor, to detect turbidity and pH levels in the aquarium water. The method employed in this study utilizes fuzzy logic to control the filter and pump in the aquarium. The results of the trial showed that turbidity decreased by 21.84%, from an initial value of 16.66 NTU to 13.02 NTU, and pH decreased by 15.26%, from an initial value of 7.86 to 6.66.
PENERAPAN ALGORITMA K-MEANS, DBSCAN, DAN AHC UNTUK CLUSTERING KUALITAS GARAM PADA PT. GARAM (PERSERO) Putro, Sigit Susanto; Syarief, Mohammad; Rochman, Eka Mala Sari
MULTITEK INDONESIA Vol 18, No 2 (2024): Desember
Publisher : Universitas Muhammadiyah Ponorogo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24269/mtkind.v18i2.8501

Abstract

Garam merupakan barang hasil produksi rakyat yang berperan penting dalam memenuhi kebutuhan konsumen dan berbagai kegiatan industri. Kualitas garam dapat mempengaruhi berbagai aspek, termasuk kesehatan, cita rasa makanan, dan penggunaan dalam kegiatan industri. Kualitas garam yang buruk dapat mempengaruhi kualitas produk akhir yang dihasilkan. Oleh sebab itu, perlu dilakukan pengelompokan kualitas garam untuk memastikan bahwa garam yang digunakan sesuai dengan kebutuhan dan standar kualitas untuk kebutuhan tertentu. Berkaitan dengan tujuan tersebut penelitian ini menerapkan 3 metode berbeda yaitu K-means, DBSCAN, dan AHC. K-means adalah algoritma clustering yang membagi data ke dalam K kelompok dengan cara meminimalkan jarak antara titik data dan pusat cluster. Agglomerative Hierarchical Clustering adalah metode dalam analisis data yang mengelompokkan objek-objek berdasarkan kesamaan karakteristik dengan cara menggabungkan kelompok-kelompok secara hirarki. DBSCAN adalah algoritma clustering yang menggunakan kerapatan spasial untuk mengelompokkan data. Dari jumlah data sebanyak 350 dengan 9 fitur yang berasal dari PT. Garam Sumenep yang di kelompokkan menggunakan tiga metode dilakukan pengujian kualitas clustering menggunakan silhuette coefficient yang menghasilkan nilai 0.345 untuk metode K-means, 0.32 untuk metode AHC dan 0.5 untuk metode DBSCAN.
OPTIMIZING SENTIMENT ANALYSIS FOR USABILITY TESTING: ENHANCING SVM ACCURACY THROUGH KERNEL SELECTION AND TUNING METHODS Basri, Hasan
MULTITEK INDONESIA Vol 18, No 2 (2024): Desember
Publisher : Universitas Muhammadiyah Ponorogo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24269/mtkind.v18i2.10615

Abstract

With over 2.4 million apps on the Google Play Store by 2023, app developers face increasing demands to ensure high usability quality to remain competitive. Traditional usability testing methods, including heuristic evaluations and user questionnaires, are often limited by high costs, time constraints, and lack of real-world context. Sentiment analysis presents an alternative approach, leveraging user reviews as a resource for usability insights. This research applies Support Vector Machine (SVM) for sentiment analysis and usability testing on Google Play Store reviews, focusing on five usability criteria. Data collection yielded 2,000 reviews from a banking app, with two annotators conducting multi-label labeling for both sentiment and usability criteria. Through a series of experiments, the Linear Kernel in SVM demonstrated the highest performance, achieving 70.50% accuracy, an F1 Score of 0.8618, and a Hamming Loss of 0.0783. Grid Search was employed to optimize the C parameter for the linear kernel, revealing an optimal C value of 0.01, which resulted in an improved accuracy of 75.20%, F1 Score of 0.8775, and Hamming Loss of 0.0686. Experiments with values above or below 0.01 showed decreased accuracy, underscoring the importance of a balanced C value to enhance model generalization and avoid overfitting. These findings suggest that sentiment analysis via SVM can effectively capture usability feedback from user reviews, providing a scalable, data-driven solution for app usability assessment. This study is part of the Machine Learning for Software Engineering (ML4SE) domain, where machine learning techniques are applied to enhance software engineering practices, specifically in optimizing usability assessment through automated analysis of user feedback.
PENGGUNAAN ALGORITMA K-NEAREST NEIGHBOR (K-NN) UNTUK PREDIKSI CUACA DENGAN DATA RECORD Verian Dwi Saputra, Rezano; Tsaqila, Siti Lathifah; Widaningrum, Ida; Karaman, Jamilah
MULTITEK INDONESIA Vol 18, No 2 (2024): Desember
Publisher : Universitas Muhammadiyah Ponorogo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24269/mtkind.v18i2.11092

Abstract

Desa Plancungan, Kecamatan Slahung, Kabupaten Ponorogo, merupakan penghasil tembakau,  salah satu produk pertanian yang berperan penting dalam mendukung mata pencaharian,  pertumbuhan ekonomi, dan penyerapan tenaga kerja. Di desa ini, petani membudidayakan  tembakau rajangan, termasuk tembakau Virginia. Namun, proses penjemuran tembakau yang  dilakukan di ruang terbuka selama dua hingga tiga hari sangat bergantung pada kondisi cuaca  yang tidak menentu, yang sering kali memengaruhi kualitas hasil panen. Untuk mengatasi  tantangan tersebut, penelitian ini menerapkan algoritma K-Nearest Neighbor (K-NN) guna  memprediksi cuaca di Desa Plancungan. Data cuaca dikumpulkan menggunakan alat  mikrokontroler yang dipasang di lokasi, yang merekam tiga parameter utama: suhu,  kelembapan, dan tekanan udara. Dari total 10.000 data yang diperoleh, sebanyak 2.500 data  digunakan untuk pelatihan dan pengujian algoritma. Hasil penelitian berupa prediksi cuaca—hujan, cerah, atau berawan—ditampilkan dalam bentuk halaman web. Informasi ini memungkinkan petani mendapatkan gambaran kondisi cuaca lebih awal, sehingga mereka dapat merencanakan langkah antisipasi untuk menjaga kualitas hasil panen dan mengoptimalkan  proses penjemuran tembakau di tengah tantangan cuaca yang berubah- ubah.
SISTEM MONITORING SMART UPS BERBASIS TELEGRAM BOT DAN PREDIKSI PEMADAMAN LISTRIK DENGAN ARMA DI RUMAH SAKIT MITRA KELUARGA SURABAYA Novianti, Triuli; Akbar, Ridho
MULTITEK INDONESIA Vol 18, No 2 (2024): Desember
Publisher : Universitas Muhammadiyah Ponorogo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24269/mtkind.v18i2.9177

Abstract

Uninterruptible power supply (UPS) digunakan sebagai sumber listrik cadangan jika listrik PLN padam. Perangkat UPS dapat melindungi segala jenis alat elektronik sensitif dari ketidakstabilan arus dan tegangan listrik. Rumah Sakit Mitra Keluarga Surabaya memiliki UPS 6 KVA dan 10 KVA yang digunakan untuk berbagai perangkat elektronik, termasuk komputer, peralatan medis, dan lainnya. Rumah Sakit Mitra Keluarga Surabaya juga menggunakan UPS sebagai perangkat backup atau pencadangan tegangan. Penelitian ini membuat sistem monitoring untuk menyelesaikan masalah yang sering terjadi pada unit UPS, seperti gagal memback-up atau mencadangkan daya saat pemadaman listrik. Sistem ini memantau UPS secara menyeluruh untuk memastikan bahwa mereka aman dan tidak rusak dengan cepat. Alat ini terdiri dari komponen mikrokontroller ESP-32, display LCD 20x4 I2C, sensor suhu MLX-90614, sensor tegangan dan arus PZEM-004T, dan bot Telegram. Sistem monitoring ini akan memantau suhu, tegangan, dan arus unit UPS. Adapun hasil prediksi ARMA menunjukkan bahwa ada 16 pemadaman listrik pada tahun 2019, 15 pemadaman listrik pada tahun 2020, 13 pemadaman listrik pada tahun 2022, dan 12 pemadaman listrik pada tahun 2023. Dengan demikian, prediksi pemadaman listrik selama 12 bulan pada tahun 2024 adalah 11 kali, dengan tingkat RMSE atau error data 0,8574011. Nilai RMSE ini dianggap sebagai nilai yang sangat baik.
ANALISIS SENTIMEN BERDASARKAN KOMENTAR PUBLIK TERHADAP SITUS BELANJA ONLINE PADA FACEBOOK (STUDI KASUS: AKUN FACEBOOK OFFICIAL SHOPEE, LAZADA DAN TOKOPEDIA) Prasetya, Angga Hadi; Buntoro, Ghulam Asrofi; Astuti, Indah Puji
MULTITEK INDONESIA Vol 18, No 2 (2024): Desember
Publisher : Universitas Muhammadiyah Ponorogo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24269/mtkind.v18i2.11814

Abstract

Online shopping is the process of buying goods and services from merchants that are sold or presented on theinternet. Consumers can visit online shopping sites from home or the office comfortably while sitting in front ofa computer or smartphone. As many as 43% agree that social media is a tool to meet the need for knowledge inthe form of product reviews and forum reviews to help make purchasing decisions. Product reviews and forumreviews are conveyed through comments on social media containing complaints, praise, or views on products orservices from an online shopping site. In Indonesia, there are several e-commerce sites used by consumers. Inthis case, the author only emphasizes the three e-commerce sites, namely Shopee, Tokopedia, and Lazada. Theauthor decided to choose these three sites as research objects because there are many reviews on the three sites,especially on Facebook social media, and to find out the general picture of the perception of Indonesian peoplewho use Facebook towards online shopping sites Lazada, Shopee, and Tokopedia. This analysis provides resultsthat the sentiment of these three online stores tends to get positive sentiment based on comments on Facebooksocial media.
PENGARUH CONVOLUTIONAL NEURAL NETWORK UNTUK PROSES DETEKSI PENYAKIT PADA DAUN TOMAT Renaldy, Aldi; Litanianda, Yovi; Zulkarnain, Ismail Abdurrazzaq
MULTITEK INDONESIA Vol 18, No 2 (2024): Desember
Publisher : Universitas Muhammadiyah Ponorogo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24269/mtkind.v18i2.11816

Abstract

Tomato plants are one of the plants that are often planted by farmers and are the main food requirement insociety. Tomato cultivation is often faced with disease problems that can attack the leaves, stems and fruit.However, many farmers often face difficulties in overcoming this problem. To solve this problem, researcherswill use a web-based system that is able to classify images of tomato leaves. The system will process the imagefirst before training the CNN model. The resulting model will be used to classify images entered through thewebsite. Apart from that, this design also has several useful benefits. The results of the analysis of the modelshow that there are challenges in distinguishing the characteristics of diseases in tomato plants, so that thedevelopment of the CNN model experiences difficulties. Despite these difficulties, the CNN algorithm providesan accuracy score of 0.9091. This number reflects the model's level of accuracy in classifying images into thecorrect categories. From these results, it can be concluded that disease detection in tomato plants using theCNN algorithm requires special effort and attention, especially in collecting representative datasets andmodeling optimal CNN architecture. A deeper understanding of the characteristics of diseases in tomato plantsalso needs to be considered to increase the accuracy of model predictions. Although there is still room forimprovement, these results provide a basis for continuing to develop and improve disease detection models intomato plants using CNN approaches.