cover
Contact Name
Lyra Yulianti
Contact Email
lyra@sci.unand.ac.id
Phone
-
Journal Mail Official
lyra@si.unand.ac.id
Editorial Address
http://jmua.fmipa.unand.ac.id/index.php/jmua/index
Location
Kota padang,
Sumatera barat
INDONESIA
Jurnal Matematika UNAND
Published by Universitas Andalas
ISSN : 2303291X     EISSN : 27219410     DOI : -
Core Subject : Science, Education,
Fokus dan Lingkup dari Jurnal Matematika FMIPA Unand meliputi topik-topik dalam Matematika sebagai berikut : Analisis dan Geometri Aljabar Matematika Terapan Matematika Kombinatorika Statistika dan Teori Peluang.
Arjuna Subject : -
Articles 15 Documents
Search results for , issue "Vol 13, No 4 (2024)" : 15 Documents clear
KARAKTERISASI POHON DENGAN BILANGAN DOMINASI-LOKASI-METRIK TIGA Zulfaneti, Zulfaneti; Baskoro, Edy Tri; Assiyatun, Hilda
Jurnal Matematika UNAND Vol 13, No 4 (2024)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jmua.13.4.340-348.2024

Abstract

Misalkan G = (V;E) adalah graf sederhana dan terhubung. Untuk suatu himpunan R = fr1; r2; : : : ; rkg V dan v 2 V , representasi titik v terhadap R adalah vektor r(vjR) = (d(v; r1); d(v; r2); : : : ; d(v; rk)) dimana d(v; r) menyatakan jarak titik v dan titik r. Himpunan R disebut himpunan pembeda dari G jika semua titik di G memiliki representasi unik terhadap R. Himpunan D disebut himpunan dominasi dari G jikasetiap titik di G-D bertetangga dengan suatu titik v 2 D. Suatu himpunan dominasidan juga merupakan himpunan pembeda disebut himpunan dominasi-lokasi-metrik dariG. Kardinalitas dari himpunan dominasi-lokasi-metrik minimum dari G disebut bilangan dominasi-lokasi-metrik dari G. Semua graf orde n dengan bilangan dominasi-lokasi-metrik 1, 2, n-2 dan n-3 telah ditentukan secara lengkap. Dalam tulisan ini, kamimengkarakterisasi semua pohon dengan bilangan-dominasi-lokasi-metrik 3 dan secarakhusus membuktikan bahwa tidak ada pohon dengan bilangan-dominasi-lokasi-metriksama dengan dimensi metriknya.
CHANGEPOINTS DETECTION OF PANDEMIC WAVE IN REAL-TIME: APPLICATIONS TO THE TRANSMISSION OF COVID-19 Zuhairoh, Faihatuz; Ridwan, Muhammad Rais
Jurnal Matematika UNAND Vol 13, No 4 (2024)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jmua.13.4.230-243.2024

Abstract

The COVID-19 pandemic has spread throughout the world. Most countries experienced the pandemic in multiple waves. The Richards model predicts when a pandemic will peak and end in a particular area. However, this model can only be used in the single-wave case. The research aims to identify a changepoint detection method capable of delineating pandemic wave boundaries, thus enabling the resolution of multiple wave cases using the Richards model. This article uses two methods to detect changepoints: the Pruned Exact Linear Time (PELT) and the interpolation method. PELT method determines the changepoint based on changes in the statistical properties of the sequence of observations which can be in the form of differences in the mean or variance of each set of observations. In contrast, the linear interpolation method determines the changepoint based on the slope of a data pattern. The two methods complement each other, where the interpolation method is used to determine whether the pandemic is still in a single wave or has multiple waves, followed by determining wave boundaries using the PELT method. Richards model parameter estimation is carried out after the wave boundaries are obtained, and initial data is taken from the last wave using the PELT method. The prediction results show the peak of the pandemic in a particular region and when it will end, which can be used to inform medium-term strategies for the government to overcome the ongoing pandemic. This information helps prevent a resurgence of infections, which would negatively affect the COVID-19 mortality rate and the area's economic situation.
PERBANDINGAN ANALISIS DISKRIMINAN DAN NAIVE BAYES DALAM PENGKLASIFIKASIAN STATUS PENERIMA BANTUAN PROGRAM KELUARGA HARAPAN DI NTB HARSYIAH, LISA; HADIJATI, MUSTIKA; FITRIYANI, NURUL
Jurnal Matematika UNAND Vol 13, No 4 (2024)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jmua.13.4.296-308.2024

Abstract

Permasalahan dalam penyaluran bantuan sosial PKH adalah ketidak tepatan penyaluran bantuan PKH. Upaya yang dapat dilakukan untuk mengatasi per masalahan tersebut adalah dengan memastikan kriteria penerimaan bantuan PKH su dah benar dan sesuai dengan kriteria KPM. Berdasarkan kriteria KPM, perlu dilakukan klasifikasi status rumah tangga penerima bantuan PKH dan yang tidak. Hal ini di lakukan dengan tujuan untuk mengetahui apakah bantuan sosial PKH yang disalurkan tepat sasaran atau tidak. Proses klasifikasi dapat dilakukan dengan menggunakan anal isis diskriminan dan metode Na¨ıve Bayes. Hasil penelitian menunjukkan bahwa ketika melakukan klasifikasi menggunakan analisis diskriminan terhadap status penerima ban tuan PKH di NTB diperoleh tingkat kesalahan klasifikasi sebesar 24,5%. Sedangkan hasil klasifikasi menggunakan metode Na¨ıve Bayes memperoleh tingkat kesalahan sebe sar 27,6%. Hasil pengklasifikasian status penerima bantuan PKH dengan menggunakan kedua metode ini tergolong akurat dan analisis diskriminan memiliki kinerja yang lebih baik dibandingkan metode Na¨ ıve Bayes untuk kasus pengklasifikasian status penerima bantuan PKH di NTB
On Metric Dimension of Edge Comb Product of Symmetric Graphs Maryati, Tita Khalis; Sobiruddin, Dindin; Hadiputra, Fawwaz Fakhrurrozi
Jurnal Matematika UNAND Vol 13, No 4 (2024)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jmua.13.4.349-357.2024

Abstract

Consider a finite graph G that is simple, undirected, and connected. Let W be an ordered set of vertices with |W| = k. The representation of a vertex v is defined as an ordered k-tuple that consists of the distances from vertex v to each vertex in W. The set W is called a resolving set for G if the k-tuples for any two vertices in G are distinct. The metric dimension of G, denoted by dim(G), is the smallest possible size of such a set W. In this paper, we determine the metric dimension of edge comb product of trees with complete multipartites or petersen graphs.
UTILIZING DISCRETE HIDDEN MARKOV MODELS TO ANALYZE TETRAPLOID PLANT BREEDING Hayati, Nahrul; Sulistyono, Eko; Handayani, Vitri Aprilla
Jurnal Matematika UNAND Vol 13, No 4 (2024)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jmua.13.4.244-256.2024

Abstract

In plant heredity, the phenotype is the result of observation that can be directly observed, while the genotype is the underlying hidden factor that underlies the expression of the phenotype. The genotype is an important aspect that needs to be understood to explain the pattern of trait inheritance and predict trait inheritance in subsequent generations. The discrete hidden Markov model is a model generated by pair of an unobserved Markov chain and an observation process. This model can be applied to tetraploid plant crosses by modeling genotypes as hidden state and phenotypes as the obeservation process. The probability of dominant phenotype in monohybrid, dihybrid and trihybrid crosses occurring over ten generations during that period is as follows 61,305%, 37,583%, and 23,041%. Furthermore, as more traits are crossed, the probability of dominant phenotype appearing within ten generations decreases. When the dominant phenotype occurs over ten generations, the same genotype can be obtained in monohybrid, dihybrid, and trihybrid crosses, which is heterozygous in the first and second generations, while from the third to the tenth generation it is homozygous dominant.
THE MIXED UNIVARIATE CONTROL CHART EWMA AND CUSUM FOR FLAVOUR PRODUCTION QUALITY PROCESS MONITORING Sari, Surya Puspita; Maiyastri, Maiyastri; Devianto, Dodi
Jurnal Matematika UNAND Vol 13, No 4 (2024)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jmua.13.4.309-315.2024

Abstract

A control chart is an important statistical technique used to monitor the average quality of a process or dispersion. Shewhart control chart is used to detect larger disturbances in process parameters. Along with the times, a more sensitive univariate control chart is created, namely EWMA and CUSUM. The control chart is developed into a combination as a Mixed EWMA-CUSUM control chart to detect smaller changes.  The performance of the Mixed EWMA – CUSUM control graph does not only rely on current observations, but also collects information from previous observations so as to provide a fast signal to detect out of control conditions.
ANALISIS KESTABILAN MODEL DINAMIKA PERCERAIAN MVQEDR Bahri, Susila; Hutagalung, Miya Qarlina; EFENDI, EFENDI; MUHAFZAN, MUHAFZAN
Jurnal Matematika UNAND Vol 13, No 4 (2024)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jmua.13.4.358-372.2024

Abstract

Tiga faktor penyebab perceraian, yaitu masalah ekonomi rumah tangga, perselisihan dan pertengkaran terus- menerus, dan kekerasan dalam rumah tangga, masih memberikan kontribusi besar terhadap angka perceraian di Indonesia. Meskipun pemerintah telah melakukan upaya penyuluhan bagi ketiga kelompok rumah tangga tersebut, namun pada kenyataannya kasus perceraian tidak kunjung berkurang. Oleh karena itu, perlu diketahui secara pasti seberapa besar pengaruh penyuluhan yang telah dilaksanakan oleh pemerintah terhadap kelompok ini. Pada penelitian ini, model matematika MVQEDR terlebih dahulu dibangun. Analisis kestabilan titik ekuilibrium model dilakukan dengan menentukan nilai eigen dan matriks Jacobian dan diperoleh bahwa titik ekuilibrium bebas perceraian stabil asimtotik jika R0 = 0, 003111368984 < 1 dan titik ekuilibrium endemik tidak stabil asimtotik jika R0 = 1, 065035325 > 1. Simulasi numerik dilakukan dengan menggunakan perangkat lunak MAPLE.
UNRAVELING THE IMPACT OF THE MEMORY, THE COMPETITION, AND THE LINEAR HARVESTING ON A LOTKA-VOLTERRA MODEL PANIGORO, HASAN S.; RAHMI, EMLI; SAVITRI, DIAN; BEAY, LAZARUS KALVEIN
Jurnal Matematika UNAND Vol 13, No 4 (2024)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jmua.13.4.257-269.2024

Abstract

The harvesting of population has a dominant influence in balancing the ecosystem. In this manuscript, the impact of harvesting in addition to competition, and memory effect on a prey-predator interaction following the Lotka-Volterra model is studied. The mathematical validation is provided by proofing that all solutions of the model are always exist, non-negative, and bounded. Obeying Matignon condition, Lyapunov function, and generalized LaSalle invariance principle, the local and global stability are investigated. To complete the analytical results, some numerical simulations are given to show the occurrence of forward bifurcation and the impact of the memory index. All results state that three possible circumstances may occur namely the extinction of both populations, the prey-only population, and the co-existence of both populations.
ESSENTIAL PROPERTIES RELATED TO SHORT-TIME FRACTIONAL FOURIER TRANSFORM SULASTERI, SRI; BACHTIAR, NASRULLAH; EKASASMITA, WAHYUNI
Jurnal Matematika UNAND Vol 13, No 4 (2024)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jmua.13.4.316-323.2024

Abstract

We start by defining the short-time fractional Fourier transform in this paper, which is a natural generalization of the fractional Fourier transform. We then investigate its essential properties and explore an uncertainty principle related to this proposed transformation.
DYNAMICS OF THE LESLIE-GOWER PREDATOR-PREY MODEL WITH THE BEDDINGTON-DEANGELIS RESPONSE FUNCTION, INCLUDING THE PRESENCE OF INFECTED PREY AND THE FEAR FACTOR OF SUSCEPTIBLE PREY TOWARD PREDATORS Miswanto, Miswanto; Windarto, Windarto; Eridani, Eridani
Jurnal Matematika UNAND Vol 13, No 4 (2024)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jmua.13.4.373-387.2024

Abstract

This article presents a stability analysis of the Leslie-Gower predator-prey model that is extended by taking into account prey infection, the presence of prey fear factors towards predators and the Beddington-DeAngelis response function. The Leslie-Gower model is a classic model that describes the dynamics of predator and prey populations, while the Beddington-DeAngelis response function accommodates the effects of population density and more complex interactions between predators and prey. The infected prey factor describes the prey's resistance to predator attacks becoming weak, while the prey fear factor towards predators affects prey growth.This study combines the components of infection in the prey population and the prey fear factor into the model to reflect the dynamics of disease and fear factors that can affect model stability. The model studied uses the Beddington-DeAngelis response function which describes the interaction between the prey population and the predator. This study uses two methods, namely analytical methods and numerical simulations. Analytical methods to study the stability analysis of the equilibrium point of the model by exploring the conditions under which the equilibrium point of the model is stable or unstable, focusing on the influence of infection parameters and the Beddington-DeAngelis response function on the stability of the equilibrium point. The results of the analysis show that prey infection and the shape of the response function can significantly affect the stability of the Leslie-Gower predator-prey model. The last section of this article presents numerical simulations that illustrate the stability of the equilibrium point of the model

Page 1 of 2 | Total Record : 15