cover
Contact Name
HENGKI TAMANDO SIHOTANG
Contact Email
hengki_tamando@yahoo.com
Phone
-
Journal Mail Official
editor.mantik@iocscience.org
Editorial Address
Perumahan Romeby Lestari Blok C, No C14 Deliserdang, Sumatera Utara, Indonesia
Location
Unknown,
Unknown
INDONESIA
Jurnal Mantik
ISSN : -     EISSN : 26854236     DOI : -
Jurnal Mantik (Manajemen, Teknologi Informatika dan Komunikasi) is a scientific journal in information systems/informati containing the scientific literature on studies of pure and applied research in information systems/information technology,Comptuer Science and management science and public review of the development of theory, method and applied sciences related to the subject. Jurnal Mantik Penusa is published by Institute of Computer Science (IOCS). Editors invite researchers, practitioners, and students to write scientific developments in fields related to information systems/information technology,Comptuer Science and management science). Jurnal Mantik is issued 4 (FOUR) times a year.
Arjuna Subject : -
Articles 2,110 Documents
360 DEGREES AND K-NEAREST NEIGHBOUR METHODS FOR LECTURER PERFORMANCE APPRAISAL SYSTEMS: 360 DEGREES AND K-NEAREST NEIGHBOUR METHODS FOR LECTURER PERFORMANCE APPRAISAL SYSTEMS Novita Br Ginting; Yuggo Afrianto
Jurnal Mantik Vol. 3 No. 1 (2019): May: Manajemen dan Informatika
Publisher : Institute of Computer Science (IOCS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (533.122 KB)

Abstract

The lecturer performance appraisal system functions to measure and evaluate the performance of the lecturers in a certain period of time. The purpose of this study is to apply the 360-degree and machine learning algorithm using the K-NN (k-nearest neighbour) method to model the lecturer performance appraisal system to be more objective and accountable. DP3 is List of Appraisal of Employee Work Implementation. DP3 data is used as knowledge datasets to be used as training data and test data for the classification process and prediction of lecturer performance values. The results obtained show the 360-degree method and K-NN is able to predict with 90% accuracy right on knowledge datasets that have not been normalized and K = 5 values. Hence, this model can then be used to become a lecturer performance appraisal system application.
SISTEM PAKAR SKRINING PENYAKIT YANG DISEBABKAN OLEH VIRUS MENGGUNAKAN CERTAINTY FACTOR: SISTEM PAKAR SKRINING PENYAKIT YANG DISEBABKAN OLEH VIRUS MENGGUNAKAN CERTAINTY FACTOR Made Hanindia Prami Swari; I Gusti Ngurah Agung Mahendra
Jurnal Mantik Vol. 3 No. 1 (2019): May: Manajemen dan Informatika
Publisher : Institute of Computer Science (IOCS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (369.979 KB)

Abstract

Extraordinary event is the emergence or increasing sickness or death epidemiologically in an area and in certain time and can lead towards plague. In addition to contagious diseases, there are also some other cause of extraordinary event such as diseases and poisoning. The lack of information regarding the diseases which is caused by virus can make extraordinary event hard to be prevented. Early detection can help people to get information about the disease so they can do medication and early prevention. A Master system is a tool to assist in early detection for disease caused by virus. A master system is an artificial intelligence (AI) program which combines knowledge base with inference system. In drawing the conclusion, the master system is using Certainty Factor. In designing the system consist of designing context diagram and DFD and the next development is implementing programming language PHP and the last stage of the system development is the Black Box Testing. The result of the research is the master system that is able to identified 7 diseases. The output system is the disease completed with the result of the patient’s trust score which is counted using certainty factor, disease definition, disease prevention and solution.
PENGARUH E-SERVICE QUALITY TERHADAP E-LOYALTY MELALUI E-SATISFACTION (STUDI PADA PELANGGAN TOKO ONLINE SHOPEE DI KOTA MEDAN): PENGARUH E-SERVICE QUALITY TERHADAP E-LOYALTY MELALUI E-SATISFACTION (STUDI PADA PELANGGAN TOKO ONLINE SHOPEE DI KOTA MEDAN) Megasari Gusandra Saragih
Jurnal Mantik Vol. 3 No. 1 (2019): May: Manajemen dan Informatika
Publisher : Institute of Computer Science (IOCS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (667.49 KB)

Abstract

The research objective is to analyze the results of e-quality services for e-loyalty through customer e-satisfaction at Shopee's online store in Medan City. The study was conducted in Medan City on 135 Shopee store customers online. The analytical tool used is Structural Equation Modeling (SEM) with AMOS assistance. This study found that e-service quality had a significant effect on e-satisfaction and e-loyalty, satisfaction had significant effect on e-loyalty, and satisfaction-satisfaction mediated partial mediation between e-service quality and e-loyalty.
SISTEM INFORMASI PENDATAAN TENAGA KERJA INDONESIA BERBASIS WEB PADA PT. LAATANSA LINTAS INTERNASIONAL: SISTEM INFORMASI PENDATAAN TENAGA KERJA INDONESIA BERBASIS WEB PADA PT. LAATANSA LINTAS INTERNASIONAL Linda Norhan; Tedi Kustandi
Jurnal Mantik Vol. 3 No. 1 (2019): May: Manajemen dan Informatika
Publisher : Institute of Computer Science (IOCS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (522.906 KB)

Abstract

PT. Laatansa Lintas Internasional is a service distributor company engaged in employment. This company distributes Indonesian Workers to several countries such as Malaysia, Singapore, Hong Kong and Taiwan. The system that runs on PT.Laatansa Lintas Internasional is still using manual methods, one of the data processing processes of Indonesian labor that is running is by collecting all the data into Microsoft Excel. Therefore there needs to be a new innovation in the process of processing Indonesian labor data, namely by designing computerized application systems to facilitate processing of data at PT Laatansa Lintas Internasional and minimizing errors in inputting data. Indonesian labor data collection system that is better than the system that has been running before. Designing Information System for Indonesian Manpower Data Collection at PT. The International Cross Laatansa to be made includes: Draft Forms of Indonesian labor data, flying data and value data, narrative procedures and flowcharts, context diagrams, data flow diagrams (DFD), entity relationship diagrams (ERD), tables used Database Design , Design of Input and Output Display which is implemented using PHP programming language and MySql software as data storage media. This data collection provides information on Indonesian labor data reports, reports on Indonesian labor exam data and flight data reports on Indonesian workers. From the explanation above, it can be concluded that the system running in PT. Laatansa Lintas Internasional is still less effective in data collection of Indonesian Manpower data so that the author will make an application that can record data on Indonesian Workers on a computer to facilitate recording and reporting from the application itself.
OPTIMASI NAIVE BAYES MENGGUNAKAN OPTIMIZE WEIGHTS DAN STRATIFIED PADA DATA KREDIT KOPERASI Ade Suryanto; Ibnu Alfarobi; Taransa Agasya Tutupoly; Risma Fauziahti
Jurnal Mantik Vol. 3 No. 1 (2019): May: Manajemen dan Informatika
Publisher : Institute of Computer Science (IOCS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (498.083 KB)

Abstract

Kredit koperasi adalah penyedia dana untuk transaksi pinjam meminjam atas persetujuan dan kesepakatan antara pihak koperasi dengan nasabahnya, serta mewajibkan peminjam untuk membayar hutang dalam jangka waktu yang telah ditentukan. Pembatasan kredit di koperasi belum menemukan cara yang paling sesuai, karena koperasi belum mempunyai analis kredit yang handal seperti perbankan dan selama ini koperasi hanya melakukan pendekatan secara personal dan survei lapangan. Klasifikasi data mining dengan model Naive Bayes, Optimize Weights dan Stratified dilakukan dengan pengujian-pengujian yang terukur melalui uji AUC dan ROC dengan bantuan Rapidminer. Hasilnya setelah dilakukan pengujian dengan model Naive Bayes ternyata menghasilkan accuracy= 66.27%, precision= 66.45%, recall= 94.39% dan hasil pengujian yang dilakukan dengan model Naive Bayes, Optimize Weights dan Stratified menghasilkan accuracy= 86.67%, precision= 89.47%, recall= 89.47%. artinya accuracy pengujian dengan menggunakan model Naive Bayes, Optimize Weights dan Stratified masih baik dan dapat dijadikan salah satu pedoman untuk deteksi pemberian kredit pada koperasi. Hasil pengujian menggunakan model Naive Bayes bukan satu-satunya untuk deteksi pemberian kredit koperasi, melainkan masih banyak model klasifikasi data mining yang kemungkinan hasilnya akan berbeda.
SISTEM PENILAIAN KINERJA KARYAWAN PADA PT. IS LOGISTIK Titik Misriati; Widiarina Widiarina; Yoseph Tajul Arifin; Amanda Subhi Pertiwi
Jurnal Mantik Vol. 3 No. 1 (2019): May: Manajemen dan Informatika
Publisher : Institute of Computer Science (IOCS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (428.108 KB)

Abstract

Kinerja karyawan yang memenuhi standar yang telah ditetapkan dalam suatu perusahaan dapat diketahui dengan penilaian kinerja karyawan. Penilaian kinerja karyawan harus dilakukan dalam perusahaan mengetahui bagaimana karyawan dalam perusahaan tersebut melaksanakan tugasnya. PT. IS Logistik melakukan penilaian kinerja karyawan setiap setahun sekali. Penilaian ini dilakukan oleh dua orang atasan/pimpinan perusahaan. Hasil dari penilaian kinerja karyawan yang dilakukan pada PT. IS Logistik akan menentukan apakah karyawan kontrak tersebut diperpanjang kontrak kerjanya, karyawan kontrak diangkat menjadi karyawan tetap atau karyawan tetap mendapatkan kenaikan gaji. Selama ini, proses penilaian kinerja karyawan dilakukan secara manual dengan menggunakan form penilaian dan diolah menggunakan Microsoft Excel. Hal ini menyebakan beberapa kendala dalam perusahaan. Oleh sebab itu, pada penelitian ini diusulkan penggunaan aplikasi untuk penilaian kinerja karyawan pada PT. IS Logistik supaya dapat membantu permasalahan dalam penilaian kinerja karyawan.
Analisis Sistem Informasi Manajemen Berbasis Komputer Dan Sistem Presensi Finger Print Terhadap Kinerja Pegawai Di Bandara Internasional Kualanamu: Analisis Sistem Informasi Manajemen Berbasis Komputer Dan Sistem Presensi Finger Print Terhadap Kinerja Pegawai Di Bandara Internasional Kualanamu Kiki Farida Ferine
Jurnal Mantik Vol. 3 No. 1 (2019): May: Manajemen dan Informatika
Publisher : Institute of Computer Science (IOCS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (438.913 KB)

Abstract

Penelitian ini mempunyai tujuan untuk menganalisis pengaruh sistem informasi manajemen berbasis komputer dan sistem presensi finger print terhadap kinerja pegawai di Bandara Internasional Kualanamu. Penelitian dilakukan terhadap 130 pegawai dengan menggunakan alat analisis Structural Equation Modelling (SEM) dengan bantuan AMOS versi 20.0. Hasil penelitian menunjukkan bahwa sistem informasi manajemen dan sistem presensi finger print berpengaruh positif dan signifikan terhadap kinerja pegawai Bandara Internasional Kualanamu.
Algoritma Support Vector Machine Untuk Klasifikasi Sikap Politik Terhadap Partai Politik Indonesia: Algoritma Support Vector Machine Untuk Klasifikasi Sikap Politik Terhadap Partai Politik Indonesia Satrio Yudho Pangestu; Yuli Astuti; Lilis Dwi Farida
Jurnal Mantik Vol. 3 No. 1 (2019): May: Manajemen dan Informatika
Publisher : Institute of Computer Science (IOCS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (542.801 KB)

Abstract

The use of social media that is increasingly easy and affordable becomes a new forum for Indonesian people to express their thoughts freely. Included in the preparation period for a democratic party held every five years. The public can freely believe through the social media they have, especially through twitter. People who come from different backgrounds often provide opinions that can lead to pros and cons. It can be used as feedback on political parties that carry presidential, vice-presidential, and successful team candidates so that they will be useful in potential assessments and can be used for better purposes. Sentiment analysis is done by sorting data from Twitter which is an opinion on political parties and the executive candidates they carry. The data is divided into 2 categories, positive and negative categories. The methods that will be used for sentiment analysis include preprocessing, word staining with TF-IDF, and making a classification model with the Support Vector Machine and K-Fold Cross Validation approach to test the accuracy of the model. The result of making a classification model is Support Vector Machine with training data of 900 to get 86% accuracy and testing using 10-Fold Cross Validation get an average accuracy rate of 71% with an error rate of 29%
Sistem Informasi Penjualan Keramik Pada UD. Bintang Lima Keramik Bekasi: Sistem Informasi Penjualan Keramik Pada UD. Bintang Lima Keramik Bekasi Duwik Sudarsono; Siti Nurajizah
Jurnal Mantik Vol. 3 No. 1 (2019): May: Manajemen dan Informatika
Publisher : Institute of Computer Science (IOCS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (603.289 KB)

Abstract

Bintang Lima Keramik adalah suatu usaha penjualan produk keramik. Sistem yang diterapkan dilihat dari segi administrasi dan transaksi masih menggunakan sistem secara manual dalam pencatatan barang yang terjual hanya dicatat dalam lembar laporan yang digunakan sebagai pembuatan laporan setiap harinya. Karena masih menggunakan sistem secara manual, proses transaksi, pengelolaan data barang dan data pemesanan menjadi tidak efisien. Sehingga memungkinkan terjadinya kesalahan pada proses transaksi dan pembuatan laporan. Jika sistem penjualan sudah terkomputerisasi tentu akan lebih mudah apabila adanya program yang dapat menunjang berbagai kegiatan operasional usaha serta menyediakan informasi yang dibutuhkan dengan cepat, tepat dan akurat kapanpun dibutuhkan. Sehingga dapat meningkatkan kualitas dalam proses pengolahan data, proses transaksi dan pemesanan yang meningkatkan kualitas dalam usaha dan pelayanan. Oleh karena itu, untuk mempermudah dan mempercepat proses penjualan, penyediaan informasi yang akurat serta membantu menyimpan data secara efisien dan efektif, maka diusulkan adanya sistem penjualan dengan teknologi komputer berbasis desktop yang menggunakan metode waterfall ini bertujuan untuk membantu mendata seluruh asset UD. Bintang Lima Keramik.
Analisis dan Pemetaan Jumlah Penumpang Kereta Api di Indonesia Menggunakan Metode Statistik Deskriptif dan K-means Clustering: Analisis dan Pemetaan Jumlah Penumpang Kereta Api di Indonesia Menggunakan Metode Statistik Deskriptif dan K-means Clustering Benny Wijaya; Tresna Maulana Fahrudin; Aryo Nugroho
Jurnal Mantik Vol. 3 No. 2 (2019): Augustus: Manajemen, Teknologi Informatiak dan Komunikasi (Mantik)
Publisher : Institute of Computer Science (IOCS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (670.774 KB)

Abstract

The development of the population in Indonesia continues to increase, which will require more transportation facilities. PT. Kereta Api Indonesia (KAI) is one of the means of transportation in Indonesia. At present the railroad transportation facilities in Indonesia are still not comprehensive, the regions that have railroad transportation facilities are Java (Jabodetabek and outside Jabodetabek), and Sumatra. By taking data on the number of train passengers from the Central Statistics Agency (BPS), the analysis and mapping of the number of train passengers using descriptive statistics and K-means clustering was carried out in this study. This study produced 3 clusters in which each cluster has a measuring value. Cluster 0 is medium, cluster 1 is high, and cluster 2 is low. Calculated using k-means clustering produces a cluster of 0 there are 63, cluster 1 there is 47, and cluster 2 there are 46 with an accuracy of about 97.9%, and calculated using descriptive statistics to produce cluster 0 there are 108, cluster 1 there is 34, and cluster 2 exists 14 with an accuracy of about 93.6%

Page 3 of 211 | Total Record : 2110


Filter by Year

2019 2025


Filter By Issues
All Issue Vol. 9 No. 3 (2025): November: Manajemen, Teknologi Informatika dan Komunikasi (Mantik) Vol. 9 No. 2 (2025): August: Manajemen, Teknologi Informatika dan Komunikasi (Mantik) Vol. 9 No. 1 (2025): May: Manajemen, Teknologi Informatika dan Komunikasi (Mantik) Vol. 8 No. 4 (2025): February: Manajemen, Teknologi Informatika dan Komunikasi (Mantik) Vol. 8 No. 3 (2024): November: Manajemen, Teknologi Informatika dan Komunikasi (Mantik) Vol. 8 No. 2 (2024): August: Manajemen, Teknologi Informatika dan Komunikasi (Mantik) Vol. 8 No. 1 (2024): May: Manajemen, Teknologi Informatika dan Komunikasi (Mantik) Vol. 7 No. 4 (2024): February: Manajemen, Teknologi Informatika dan Komunikasi (Mantik) Vol. 7 No. 3 (2023): November: Manajemen, Teknologi Informatika dan Komunikasi (Mantik) Vol. 7 No. 2 (2023): Agustus: Manajemen, Teknologi Informatika dan Komunikasi (Mantik) Vol. 7 No. 1 (2023): May: Manajemen, Teknologi Informatika dan Komunikasi (Mantik) Vol. 6 No. 4 (2023): February: Manajemen, Teknologi Informatika dan Komunikasi (Mantik) Vol. 6 No. 3 (2022): November: Manajemen, Teknologi Informatika dan Komunikasi (Mantik) Vol. 6 No. 2 (2022): August: Manajemen, Teknologi Informatika dan Komunikasi (Mantik) Vol. 6 No. 1 (2022): May: Manajemen, Teknologi Informatika dan Komunikasi (Mantik) Vol. 5 No. 4 (2022): February: Manajemen, Teknologi Informatika dan Komunikasi (Mantik) Vol. 5 No. 3 (2021): November: Manajemen, Teknologi Informatika dan Komunikasi (Mantik) Vol. 5 No. 2 (2021): Augustus: Manajemen, Teknologi Informatika dan Komunikasi (Mantik) Vol. 5 No. 1 (2021): May: Manajemen, Teknologi Informatika dan Komunikasi (Mantik) Vol. 4 No. 4 (2021): February: Manajemen, Teknologi Informatika dan Komunikasi (Mantik) Vol. 4 No. 3 (2020): November: Manajemen, Teknologi Informatika dan Komunikasi (Mantik) Vol. 4 No. 2 (2020): Augustus: Manajemen, Teknologi Informatika dan Komunikasi (Mantik) Vol. 4 No. 1 (2020): May: Manajemen, Teknologi Informatika dan Komunikasi (Mantik) Vol. 3 No. 4 (2020): February: Manajemen, Teknologi Informatika dan Komunikasi (Mantik) Vol. 3 No. 3 (2019): November: Manajemen, Teknologi Informatika dan Komunikasi (ManTIK) Vol. 3 No. 2 (2019): Augustus: Manajemen, Teknologi Informatiak dan Komunikasi (Mantik) Vol. 3 No. 1 (2019): May: Manajemen dan Informatika More Issue