cover
Contact Name
Nur Wahidin Ashari
Contact Email
nurwahidin_pmath@uncp.ac.id
Phone
-
Journal Mail Official
nurwahidin_pmath@uncp.ac.id
Editorial Address
Jalan Latammacelling No. 9 B Kota Palopo
Location
Kota palopo,
Sulawesi selatan
INDONESIA
Proximal: Jurnal Penelitian Matematika dan Pendidikan Matematika
ISSN : 26158132     EISSN : 26157667     DOI : 10.30605/proximal
Core Subject : Education,
Proximal publishes research results, literature studies, and scientific papers on mathematics and mathematics education. Published scientific studies include Mathematics Teaching, Development of Mathematics Education, Mathematical Sciences, Applied Mathematics, Actuarial Mathematics, and related fields.
Articles 670 Documents
Kemampuan Penyelesaian Masalah Matematis Siswa melalui Soal Cerita Deret Aritmatika dengan Tahapan Ideal: STUDENTS MATHEMATICAL PROBLEM SOLVING SKILLS THROUGH ARITHMETIC SEQUENCE WORD PROBLEMS WITH IDEAL STEPS Marlinda, Marlinda; T, Ahmad Yani; Siregar, Nurfadilah; Meldi, Nadya Febriani
Proximal: Jurnal Penelitian Matematika dan Pendidikan Matematika Vol. 8 No. 1 (2025): Sains Matematika dan Pendidikan Matematika
Publisher : Universitas Cokroaminoto Palopo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30605/proximal.v8i1.4627

Abstract

This research aims to describe the mathematical problem-solving abilities of students at SMAN 7 Pontianak regarding story problems in arithmetic sequences, based on the IDEAL stages. The subjects of this study were selected based on their categorization into high, medium, and low ability students. This research employed a descriptive approach with qualitative methods. The instruments used for data collection included problem-solving ability test results and interview sheets.The findings of the study indicate that: (a) subjects with high problem-solving abilities successfully completed all five stages of the IDEAL problem-solving process. (b) subjects with medium problem-solving abilities were able to perform the IDEAL stages, but their results still contained errors. (c) subjects with low problem-solving abilities struggled to complete all five IDEAL stages when solving story problems in arithmetic sequences. Students with lower academic performance were only able to identify problems. They faced difficulties in defining goals and exploring possible strategies, which led to mistakes in the subsequent stages.
Analisis Multivariat Tingkat Kemiskinan Di Kabupaten Tuban: Faktor Paling Dominan Muna Afdi Muniroh
Proximal: Jurnal Penelitian Matematika dan Pendidikan Matematika Vol. 8 No. 1 (2025): Sains Matematika dan Pendidikan Matematika
Publisher : Universitas Cokroaminoto Palopo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30605/proximal.v8i1.4660

Abstract

This research aims to identify significant factors influencing the poverty level in Tuban Regency. Multiple linear regression analysis using the Ordinary Least Squares (OLS) method was applied using the Google Colab platform and the Scikit-learn library to examine the relationship between the Human Development Index (HDI), Open Unemployment Rate (OUR), and Gini ratio on the poverty level. Before the regression analysis was conducted, the data were tested for normality using the Shapiro-Wilk test to ensure that the classical regression assumptions were satisfied. Then, a correlation matrix is presented to provide an initial overview of the relationship between variables. The analysis results show that the HDI is the dominant factor that significantly contributes to the decrease in the poverty level in Tuban Regency. Meanwhile, the unemployment rate and the gini ratio do not show a significant influence in this regression model. Visualization of actual data and model data shows a fairly good fit, indicating the model's accuracy in explaining the variability of the number of poor residents.
Local Metric Dimension of the Line Graph of a Generalized Petersen Graph Tadjuddin, Nur Fahri
Proximal: Jurnal Penelitian Matematika dan Pendidikan Matematika Vol. 8 No. 1 (2025): Sains Matematika dan Pendidikan Matematika
Publisher : Universitas Cokroaminoto Palopo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30605/proximal.v8i1.4707

Abstract

Let G be a graph that has a vertex set V(G) and an edge set E(G). Let W={w_1,w_2,…w_k} be a subset of V(G). The representation of a vertex v∈V(G) with respect to W, denoted by r(v|W), is defined as k-vector (d(v,w_1 ),d(v,w_2 ), …, d(v,w_k )). A set W is called a local resolving set of G if r(u│W)≠r(v│W) for every two adjacent vertices u,v∈V(G). The smallest cardinality of all local resolving set in G is called the local metric dimension of G, denoted by lmd(G). The local resolving set of G with cardinality lmd⁡(G) is called a local basis of G. In this paper, we determine the local metric dimension of the line graph of generalized Petersen graph P_(n,1).
SOLUSI PERMASALAHAN PHUBBING REMAJA AKIBAT KECANDUAN SMARTPHONE MELALUI PENERAPAN NILAI SIPAKATAU, SIPAKAINGE, SIPAKALEBBI DENGAN ANALISIS MODEL MATEMATIKA DI KOTA MAKASSAR Thaha, Irwan; Oeitama, Whannie Youngger; Badawia, Annisa Nur; Topayung, Monalisa; Nasrul, Muhammad
Proximal: Jurnal Penelitian Matematika dan Pendidikan Matematika Vol. 8 No. 1 (2025): Sains Matematika dan Pendidikan Matematika
Publisher : Universitas Cokroaminoto Palopo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30605/proximal.v8i1.4739

Abstract

Phubbing is a social problem caused by various factors, one of which is smartphone addiction. This research aims to build a SEAR mathematical model of phubbing problems among adolescents due to smartphone addiction, analyse and simulate the model to predict the number of phubbing cases in Makassar City, and find parameter solutions to this problem. The population in this study consists of adolescents aged 10-14 years in Makassar City, with a sample size of 399 people. The research stages carried out were: building a SEAR model of the phubbing problem, determining the equilibrium point, analysing the stability of the equilibrium point, determining the value of the basic reproduction number , carrying out model simulations using Maple, and interpreting the simulation results. In this paper, it is obtained a SEAR mathematical model for the problem of phubbing; two equilibrium points, namely the phubbing-free and the phubbing equilibrium point; stability of the phubbing-free and phubbing equilibrium point; and the basic reproduction number 3.459 which shows that phubbing cases occur in adolescents with a percentage increase of 1.3% every year. Based on the model simulation, the results obtained show that the parameter solutions in the form of applying the 3S values can reduce the rate of phubbing due to smartphone addiction among adolescents in Makassar City.
SOLUSI MENJAGA KERAGAMAN BUDAYA DAN KETIDAKSETARAAN SOSIAL DALAM MENGAHADAPI ERA-GLOBALISASI MULTIKULTURALISME DENGAN ANALISIS MODEL MATEMATIKA DI KOTA MAKASSAR Pratama, Muhammad Isbar; Nur, Fauzi Fikriyyah; Benedicta, Angel; Imran, Nabila Ramadhani; Ifkah, Siti Nur
Proximal: Jurnal Penelitian Matematika dan Pendidikan Matematika Vol. 8 No. 1 (2025): Sains Matematika dan Pendidikan Matematika
Publisher : Universitas Cokroaminoto Palopo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30605/proximal.v8i1.4860

Abstract

Riset ini menginvestigasi solusi untuk menjaga keragaman budaya dan mengurangi ketidaksetaraan sosial di Kota Makassar dalam menghadapi era globalisasi multikulturalisme. Metode gabungan kualitatif dan kuantitatif digunakan dengan memanfaatkan analisis model matematika untuk menganalisis dinamika sosial dan budaya yang kompleks. Metode kualitatif melibatkan studi kasus mendalam, wawancara, dan observasi partisipatif untuk memahami konteks lokal dan persepsi masyarakat terhadap multikulturalisme. Sementara itu, metode kuantitatif melibatkan pengumpulan data statistik dan penerapan model matematika untuk memprediksi dampak dari berbagai intervensi kebijakan. Hasil penelitian diharapkan dapat memberikan rekomendasi strategis kepada pemerintah dan pemangku kepentingan untuk meningkatkan toleransi budaya dan mengurangi disparitas sosial di Kota Makassar, serta berkontribusi pada pemahaman teoritis dan praktis tentang multikulturalisme dalam konteks lokal yang berbeda.
Mathematical Topology Meets Tradition: Alexander Polynomial Analysis of Sidalungguh Ketupat Weaving Patterns Ja'faruddin, Ja'faruddin
Proximal: Jurnal Penelitian Matematika dan Pendidikan Matematika Vol. 8 No. 1 (2025): Sains Matematika dan Pendidikan Matematika
Publisher : Universitas Cokroaminoto Palopo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30605/proximal.v8i1.4869

Abstract

This research aims to describe the relationship between mathematics and culinary culture, specifically focusing on ketupat, particularly the Sidalungguh Ketupat. Using knot theory applications, this study examines how mathematics and culinary culture are interconnected. This analysis was conducted by comparing the knots in the ketupat with knot theory literature, leading to the creation of knot diagrams. Through identification using Alexander polynomials, the following result was obtained: This research was conducted to explore the scientific potential in examining mathematics through traditional food. This research aims to describe the relationship between mathematics and culinary culture, specifically focusing on ketupat, particularly the Sidalungguh Ketupat. Using knot theory applications, this study examines how mathematics and culinary culture are interconnected. This analysis was conducted by comparing the knots in the ketupat with knot theory literature, leading to the creation of knot diagrams. Through identification using Alexander polynomials, the following result was obtained: This research was conducted to explore the scientific potential in examining mathematics through traditional food.
Klasifikasi Kabupaten/ Kota Sejahtera dan Tidak Sejahtera dengan Metode Spectral Clustering pada Provinsi Sumatera Utara Batu, Annisa Rajaq Lumban; Lubis, Riri Syafitri; Harleni, Silvia
Proximal: Jurnal Penelitian Matematika dan Pendidikan Matematika Vol. 8 No. 1 (2025): Sains Matematika dan Pendidikan Matematika
Publisher : Universitas Cokroaminoto Palopo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30605/proximal.v8i1.4887

Abstract

People's welfare is basically a condition whose form is dynamic or in other words its quantitative value will never stop because it will continue to change along with the development of human life needs. In the Regional Medium Term Development Plan (RPJMD) of North Sumatra Province, the government is trying to realize an advanced and prosperous community life. Law No. 11 of 2019 article 3 paragraph 1, it is also written that the purpose of administering social welfare is to increase the level of welfare, quality and survival. As according to the Central Statistics Agency for North Sumatra in 2021 regarding indicators of people's welfare, namely, population, health, education, employment, household consumption and expenditure, housing and the environment, and participation in social activities. To make a strategy to improve the welfare of the people of North Sumatra, the Government needs to determine which districts or cities are prosperous and which are not. This study uses the spectral clustering method in which this method forms clusters obtained according to data taken at the Central Bureau of Statistics which will be carried out in 2022 data taken in 2021. The results of this study indicate the application of the spectral clustering method for classifying prosperous and less prosperous city districts in North Sumatra province and clusters obtained as many as 2 clusters from data from 33 urban districts in North Sumatra province, namely cluster 1 is a prosperous district or city, namely Medan and Deli Serdang, and cluster 2 is a district or city that is not prosperous, namely, apart from Medan and Deli Serdang.
Analisis Kesalahan Penyelesaian Soal Materi Segi Empat Menggunakan Prosedur Newman Pada Peserta Didik Kelas VII Di SMP Negeri 4 Tanjung Morawa Saragih, Aprilia Mula Defi; Simamora, Dian Utami; Ginting, Diyan Tia Rony Br; Fauzi, KMS. Amin
Proximal: Jurnal Penelitian Matematika dan Pendidikan Matematika Vol. 8 No. 1 (2025): Sains Matematika dan Pendidikan Matematika
Publisher : Universitas Cokroaminoto Palopo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30605/proximal.v8i1.4895

Abstract

Riset ini berguna untuk mengidentifikasi jenis kesalahan yang diselenggarakan anak didik serta alasan yang menyebabkannya dalam menjawab soal cerita terkait segi empat. Untuk menganalisis kesalahan siswa, digunakan metode NEA. Riset ini bersifat deskriptif melalui pendekatan kualitatif. Data dikumpulkan melalui tes dan wawancara, dengan responden sebanyak 34 anak didik kelas VII E SMP N 4 Tanjung Morawa. Berpatokan analisis data menggunakan metode NEA, ditemukan bahwa kesalahan membaca mencapai 39,70%, kesalahan memahami soal sebesar 41,17%, kesalahan transformasi 22,05%, kesalahan keterampilan proses 38,23%, dan kesalahan menulis jawaban 38,23%. Alasan penyebab kesalahan tersebut meliputi minimnya pemahaman terhadap soal cerita, ketidaktelitian, minimnya bahasa yang dikuasai, kekeliruan konsep, kesukaran dalam melakukan penaksiran, serta kebiasaan yang kurang dalam mencantumkan simpulan dan satuan pada jawaban akhir. Kesimpulannya, banyak anak didik menyelenggarakan kesalahan ketika menulis jawaban, khususnya disebabkan oleh ketidakcermatan dan kurangnya pemahaman konsep.
Implementasi Algoritma Dijkstra Untuk Pencarian Rute Terpendek Ke Museum Mulawarman Tenggarong Kusnadi; Syahroni, Muhammad
Proximal: Jurnal Penelitian Matematika dan Pendidikan Matematika Vol. 8 No. 1 (2025): Sains Matematika dan Pendidikan Matematika
Publisher : Universitas Cokroaminoto Palopo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30605/proximal.v8i1.4896

Abstract

Masalah jarak dan kesulitan dalam menentukan rute adalah tantangan umum yang dihadapi oleh banyak orang ketika mengunjungi lokasi tertentu. Algoritma Dijkstra diimplementasikan untuk menghitung jarak terpendek dari titik tertentu ke Museum Mulawarman yang dipilih sebagai tujuan destinasi wisata. Implementasi algoritma Dijkstra ini dirancang untuk mengoptimalkan pencarian rute menuju museum dengan bobot jarak terpendek di Tenggarong Kutai Kartanegara. Proses pencarian ini dapat diselesaikan menggunakan metode algoritma Dijkstra, sehingga kita dapat memahami tahapan proses perhitungan dengan metode tersebut. Algoritma Dijkstra digunakan untuk menemukan jalur terpendek dalam bentuk graf yang memiliki bobot dan pemetaan area yang saling terhubung melalui jalur yang sudah ditentukan. Penelitian ini bertujuan untuk menentukan rute terpendek dari titik tertentu menuju ke Museum Mulawarman Tenggarong. Berdasarkan pengujian yang dilakukan, penerapan algoritma Dijkstra untuk menemukan rute terpendek menuju ke Museum Mulawarman ini menjadi informasi bagi pengunjung agar efektif dan optimal.
Ekspolarasi Konsep Fungsi Matematika Dalam Pembuatan Kain Tenun Tradisional Wajo Ja'faruddin, Ja'faruddin; Khaerati, Khaerati; Aris, Fauzan Abdillah; Jelita, Jelita; Nurdin, Nurazizah; Qalzum, Umrah Nur; Azzahra, Aulia; Ardiyanti, Fifi
Proximal: Jurnal Penelitian Matematika dan Pendidikan Matematika Vol. 8 No. 1 (2025): Sains Matematika dan Pendidikan Matematika
Publisher : Universitas Cokroaminoto Palopo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30605/proximal.v8i1.4898

Abstract

Traditional arts and mathematics share a profound yet often overlooked connection, particularly in the process of traditional textile making. In South Sulawesi, Wajo woven fabric represents a cultural heritage whose production process involves complex mathematical calculations. This research aims to explore and analyze the application of mathematical function concepts in the Wajo weaving process. Data collection was conducted through direct observation of the weaving process, interviews with craftsmen, and documentation studies, which were then analyzed using qualitative descriptive methods. The findings reveal that the Wajo weaving process has a strong correlation with mathematical function concepts, where variables such as thread count, card patterns, and weaving techniques form mathematical relations that generate specific motifs. Understanding this relationship can contribute to the preservation and development of traditional weaving arts through scientific approaches.