cover
Contact Name
Januar Arif Fatkhurrahman
Contact Email
januarfa@gmail.com
Phone
+62816655080
Journal Mail Official
jurnalrisettppi@gmail.com
Editorial Address
Balai Besar Teknologi Pencegahan Pencemaran Industri Bagian Penelitian dan Pengembangan Jl. Kimangunsarkoro No 6 Semarang, Jawa Tengah, Indonesia 50136
Location
Kota semarang,
Jawa tengah
INDONESIA
Jurnal Riset Teknologi Pencegahan Pencemaran Industri
ISSN : 20870965     EISSN : 25035010     DOI : https://doi.org/10.21771
Jurnal Riset Teknologi Pencegahan Pencemaran Industri is published biannualy by the Balai Besar Teknologi Pencegahan Pencemaran Industri, this is Research and Development Institution under Badan Penelitian dan Pengembangan Industri of Ministry of Industry Republic Indonesia. The Jurnal Riset Teknologi Pencegahan Pencemaran Industri covers a broad spectrum of the science and technology of air, soil, and water pollution management and control while emphasizing scientific and engineering solutions to environmental issues encountered in industrialization. Particularly, interdisciplinary topics and multi-regional/global impacts of environmental pollution, advance material, and energy as well as scientific and engineering aspects of novel technologies are considered favorably. The scope of the Journal includes the following areas, but is not limited to: 1. Environmental Technology, within the area of air pollution technology, wastewater treatment technology, and management of solid waste and harzardous toxic substance 2. Process technology and simulation, technology and/or simulation in industrial production process aims to minimize waste and environmental degradation 3. Design Engineering, device engineering to improve process efficiency, measurement accuracy and to detect pollutant 4. Material fabrication, environmental friendly material fabrication as subtitution material for industry 5. Energy Conservation, process engineering / technology / conservation of resources for energy generation.
Articles 137 Documents
Identifying Concentration of Carbon Dioxide at Heights of 1.5 M and 15 M in Six Locations in Urban Areas Huboyo, Haryono Setiyo; Manullang, Okto Risdianto; Samadikun, Budi P
Jurnal Riset Teknologi Pencegahan Pencemaran Industri Vol. 13 No. 2 (2022): November
Publisher : Balai Besar Standardisasi dan Pelayanan Jasa Pencegahan Pencemaran Industri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21771/jrtppi.2022.v13.no2.p1-9

Abstract

Several activities in urban areas emit CO2 gas and the amount of the emission is closely related to land use. This will, in turn, increase global warming phenomena in urban areas. So far, the estimation of pollutant concentrations in the ambient air has been carried out at the height of human breath, and very rarely the concentration values at low-level altitudes have been studied in Indonesia. This study tries to analyze the CO2 concentration based on different altitudes and different locations. Measurements of this study were carried out in industrial, residential, commercial, and highway areas using drones at two altitudes of 1.5 m and 15 m. The use of altitude variations to know the homogeneity of CO2 spatial distribution at different heights. The results of the study showed CO2 concentrations on weekday mornings and afternoons, and weekend mornings in the sampling areas at 1.5 m and 15 m in the range of 393 – 462 ppm and 391 – 460 ppm, respectively. The statistical test showed that there is no significant CO2 concentration difference between altitudes of 1.5 m and 15 m, with only a 0.17% difference value on average. The Tugu Industrial Estate area has the highest concentration of CO2, while the area on Jalan Perintis Kemerdekaan has the lowest concentration.
The Effect of Bentonite and Palm Shell Ash on The Mechanical and Physical Properties of Geopolymer Concrete Hendronursito, Yusup; Amin, Muhammad; Chambioso, Yugo; Suharto; Marjunus, Roniyus
Jurnal Riset Teknologi Pencegahan Pencemaran Industri Vol. 13 No. 2 (2022): November
Publisher : Balai Besar Standardisasi dan Pelayanan Jasa Pencegahan Pencemaran Industri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21771/jrtppi.2022.v13.no2.p21-27

Abstract

Geopolymer concrete is an alternative to obtaining environmentally friendly mortar by synthesizing materials that contain a lot of aluminum silicate. This study aims to determine the effect of bentonite and palm shell ash composition on geopolymers' physical and mechanical characteristics. All materials are mashed, mixed, and molded with a 5x5x5 cm3 cube. Ten specimens were prepared with bentonite - palm shell ash compositions are 40/45, 45/40, 50/35, 55/30, and 60/25 wt%. Meanwhile, the composition of NaOH, Na2SiO3, superplasticizer and water remained at 1.3, 7.7, 2, and 5 wt%, respectively. Then the samples were dried at room temperature for 24 hrs and heated at 60 °C or 80 °C for 12 hrs. The geopolymer concrete with the best characteristics was obtained with a composition of 40 wt% bentonites and 45 wt% palm shell ash by heating at 80 °C. This specimen has a compressive strength of 11.94 MPa with a density of 2.42 g/cm3, porosity of 8.43%, and absorption of 3.48%. The results have a chemical composition of 55.59% SiO₂, 9.45% Al2O3, and 8.22 Fe2O3 with a dominant quartz phase. Scanning electron microscope photo shows good bonding between particles, and there are no pores formed.
The Kinetic Analysis and Adsorption Isotherm of Chicken Egg Shells and Membranes Against Synthetic Dyes Hevira, Linda; Gampito
Jurnal Riset Teknologi Pencegahan Pencemaran Industri Vol. 13 No. 2 (2022): November
Publisher : Balai Besar Standardisasi dan Pelayanan Jasa Pencegahan Pencemaran Industri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21771/jrtppi.2022.v13.no2.p28-36

Abstract

Textile industry waste at this time is enough to worry the community and the environment. The presence of synthetic dyes in water is hazardous, even in small concentrations. These synthetic dyes are derivatives of aromatic compounds such as benzene, toluene, and naphthalene, which are more resistant and stable than natural dyes. The adsorption method is used because it is easier to do, has no side effects, and does not require complicated and expensive equipment. In this study, the shells and membranes of discarded chicken eggs became useful as an absorbent of indigo carmine dye with an adsorption capacity of 6.399 mg/g. The adsorption reaction kinetics were analyzed from the optimal contact time data, and the reaction isotherm was analyzed from the adsorption optimal concentration data. The kinetic model that fits the research is the second pseudo-order with R2 = 0.9998. The adsorption mechanism demonstrates that the adsorption capacity is proportional to the adsorbent's active sites. The adsorption isotherm model, with R2 = 0.9748, is more closely related to the Freundlich isotherm model, indicating that adsorption occurs in several layers. From an economic point of view, chicken egg shells and membranes can be recommended as dye absorbers that are eco-friendly, efficient, and simple to obtain while lowering organic solid waste.
Analysis of Potential Utilization of Sarulla Geothermal Combined Cycle Residual Fluids for Direct Use in The Coffee Industry Harefa, Jonius Christian; Hadiyanto; Harmoko, Udi
Jurnal Riset Teknologi Pencegahan Pencemaran Industri Vol. 13 No. 2 (2022): November
Publisher : Balai Besar Standardisasi dan Pelayanan Jasa Pencegahan Pencemaran Industri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21771/jrtppi.2022.v13.no2.p37-50

Abstract

The Geothermal Power Plant is one of the new renewable energy power plants. In Indonesia, the realization has reached 2%. Sarulla Operations Limited is the first geothermal power plant in Indonesia, located in North Tapanuli Regency, that utilizes combined cycle technology. Coffee is the leading commodity in the North Tapanuli district, with a plant area of 17,586 hectares. Coffee is dried in the traditional way (open field drying) so that it is still constrained by rain and cloudiness and can only be done during the day. The reinjection well fluid has a temperature of 103°C with a flow rate of 4978 t/h and a pressure of 6–14 Bar. This study analyses the residual fluid energy for coffee drying purposes. Energy and exergy calculations are done manually and using DWSIM software with a total of 24 data points 24 hours a day to represent the availability of dryers both day and night. The results showed that the most energy needed to raise the drying air temperature at night from 15°C to 60°C was 125.62 kW, while the lowest energy needed to raise the drying air temperature during the day from 30°C to 40°C was 27.92 kW. The results of research calculations show the energy potential for residual fluid from geothermal plants to be used for drying coffee for 24 hours, both day and night.
Evaluation of the Implementation Integrated Biological System Industrial Wastewater Treatment Plant: Pollutant Removal, Operational Maintenance, Estimation of Carbon Emission Setianingsih, Nanik Indah; Farida Crisnaningtyas; Agus Purwanto; Ikha Rasti Julia Sari
Jurnal Riset Teknologi Pencegahan Pencemaran Industri Vol. 13 No. 2 (2022): November
Publisher : Balai Besar Standardisasi dan Pelayanan Jasa Pencegahan Pencemaran Industri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21771/jrtppi.2022.v13.no2.p10-20

Abstract

The development of WWTP in business activities needs to pay attention to getting appropriate WWTP that is more valuable to support sustainable development. This study aims to evaluate two systems of integrated biological WWTP; anaerobic-wetland, and anaerobic-aerobic-wetland, including the effectiveness of pollutant removal, operational and maintenance, and estimation of carbon emissions. The performance of pollutant removal was evaluated by analyzing inlet and outlet samples of WWTP. An operational and maintenance evaluation was carried out by studying the WWTP operating system and maintenance procedures supported by a literature review. Carbon emission estimation was carried out using a formula referring to the IPCC Guidelines (2006). Organic matter removal of anaerobic-aerobic-wetland WWTP in the form of BOD₅ and COD are 92.12% and 91.72%, respectively, higher than anaerobic-wetland WWTP are 88.69% of BOD₅ and 77.62% of COD. Anaerobic-aerobic-wetland WWTP needs more maintenance and operation than anaerobic-wetland WWTP. The highest carbon emission of both WWTP is 41530.91 kgCO₂ eq/year of anaerobic-wetland WWTP from the organic matter removal process and 46485.15 kgCO₂ eq/year of anaerobic-aerobic-wetland WWTP. Electrical energy consumption emits in anaerobic-aerobic-wetland WWTP is 22338 kgCO₂ eq/year higher than anaerobic-wetland WWTP at 4299.70 kgCO₂ eq/year. Total carbon emissions of anaerobic-wetland WWTP is 47404.58 kgCO₂ eq/year and anaerobic-aerobic-wetland WWTP is 68900.23 kgCO₂ eq/year.
Impact of Reduced Activator Concentration and Curing Method on Compressive Strength of Metakaolin/Fly Ash-based Geopolymer Mortar Harmaji, Andrie; Haimir, Alexander Syahlendra; Sunendar, Bambang
Jurnal Riset Teknologi Pencegahan Pencemaran Industri Vol. 14 No. 1 (2023): May
Publisher : Balai Besar Standardisasi dan Pelayanan Jasa Pencegahan Pencemaran Industri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21771/jrtppi.2023.v14.no1.p19-28

Abstract

The demand for cement is increasing each year, but the manufacture of 1 tonne of cement produces an equal number of carbondioxide (CO2) gas which is directly related to the increase in global warming. Therefore, we need a substitute material, namely geopolymer. This material has relatively superior properties compared to cement. However, one of the drawbacks of geopolymers is that the production costs are relatively more expensive compared to the manufacture of pre-cast cement because it requires chemical solutions such as sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) to activate the precursor. This research was conducted to replace a specific ratio of alkali activator with water to reduce the use of alkaline hydroxide solutions and sodium silicate while reducing production costs. The experiment was carried out by replacing the activator solution with water at a certain amount with a different curing method. Mechanical properties, X-Ray Diffraction (XRD), and Fourier Transform Infrared (FTIR) spectroscopy characterization were used to analyze the effect of additional water in geopolymer. The compressive test result shows that the maximum water content that can replace the activator solution is 20% by activator mass for fly ash-based geopolymers and 30% by activator mass for metakaolin-based geopolymers, with sealed and bare curing conditions before the compressive strength was decreased sharply. Substitution of 10% water in fly ash-based geopolymer increases the compressive strength to 17.20 MPa. Compressive test results and characterization showed that the optimal curing condition for fly ash-based geopolymer was sealed curing and bare curing for metakaolin-based geopolymer. The strength increase is due to O-C-O bonds representing sodium carbonate (Na2CO3), which affects the compressive strength of fly ash-based and metakaolin-based geopolymers.
Evaluation of Diesel Engine Performance Using Biodiesel from Cooking Oil Waste (WCO) Suardi, Suardi; Setiawan, Wira; Nugraha, Andi Mursid; Alamsyah, Alamsyah; Ikhwani, Rodlian Jamal
Jurnal Riset Teknologi Pencegahan Pencemaran Industri Vol. 14 No. 1 (2023): May
Publisher : Balai Besar Standardisasi dan Pelayanan Jasa Pencegahan Pencemaran Industri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21771/jrtppi.2023.v14.no1.p29-39

Abstract

The increasing use of fossil fuels will cause the world's oil reserves to be depleted. In this case, it is necessary to increase the use of alternative renewable fuels, one of which is biodiesel waste cooking oil (WCO). The method used is an experimental test with a mixture of used cooking oil biodiesel and fuel. Before testing, the temperature of each fuel is increased to determine the effect of temperature on the density and viscosity values. The highest density value is found in B50 fuel at 26 °C, with a density of 0.854 gr/ml, while the lowest density is found in diesel fuel at 60 °C, with a density of 0.822 gr/ml. The highest viscosity value is found in B50 fuel at 26 °C and 60 °C, which is 3.26 cSt. After that, testing was carried out on a diesel engine, which produced the highest thermal efficiency value of 21.16% on B50 fuel with a temperature of 60 °C at 1000 rpm rotation and a load of 4000 watts. The lowest thermal efficiency of 6.43% was found in B50 fuel with a temperature of 26 °C at 800 rpm and a load of 1000 watts. The lowest consumption was found in B30 with a temperature of 60 °C at 1200 rpm, which was 420.78 gr/kWh. From the results of the tests that have been carried out, it can be concluded that the lower the density and viscosity of the fuel, the better the performance of the diesel engine on average. High temperatures effectively make the engine performance value better than normal temperatures (26 °C), and the performance of diesel engines is better with WCO fuel, especially in SFC.
The pH-electrodeposition-dependant of Iron Oxide Toward The Physicochemical Characteristics and Electrochemical Performance in Biorefractory Pollutant Degradation Kosimaningrum, Widya Ernayati; Heriyanto, Heri; Yulvianti, Meri; Pitaloka, Alia Badra; Najahtama, Muhammad Raja; Wibisana, Muhammad Aditya; Sutianingsih, Yulis
Jurnal Riset Teknologi Pencegahan Pencemaran Industri Vol. 14 No. 1 (2023): May
Publisher : Balai Besar Standardisasi dan Pelayanan Jasa Pencegahan Pencemaran Industri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21771/jrtppi.2023.v14.no1.p8-18

Abstract

Electrodeposition of the iron oxide (FexOy) nanoparticles on the graphite felt was prepared from a mixture of iron (II) and iron (III) precursor solution with various pHs (2, 7, and 10) by applying a constant current (galvanostatic) of 0.1 A for 30 minutes. Each resulting sample was coded GF/FexOy -2, GF/FexOy -7, and GF/FexOy -10, respectively. Graphite felt without modification, Raw-GF, was used as control. The mass of iron oxide (FexOy) deposited ranged from 0.02 to 0.03 grams. The product characterisation using a Scanning Electron Microscope (SEM) showed the distribution of 500 nm particles on the surface of the graphite felt for the GF/FexOy -2 sample. In comparison, the distribution of larger particles (1 – 2 μm) was observed in the samples of GF/FexOy -7 and GF/FexOy -10, respectively. Spectrum resulting from an X-ray Diffraction Spectroscopy (XRD) showed the formation of iron oxides (FexOy) such as magnetite (Fe3O4), haematite (Fe2O3), goethite (FeOOH), and lepidocrocite (FeO(OH)). Fourier Transform Infra-Red (FTIR) spectrum also confirmed the presence of Fe2O3 in the GF/FexOy -2 sample, Fe3O4 in the GF/FexOy -7 and GF/FexOy -10 samples, and FeOOH in all three samples. Applying the iron oxide modified graphite felt in the electro-Fenton approach process without aeration showed that it can degrade bio-refractory pollutants, such as methyl orange. The observed degradations of methyl orange were a decrease in the colour intensity up to 81.37% and a decrease in the COD up to 49.85%.
The Potency of Biodiesel Production from The Local Used Frying Oil Through The Electrocatalysis Method Aulia, Haris Numan
Jurnal Riset Teknologi Pencegahan Pencemaran Industri Vol. 14 No. 1 (2023): May
Publisher : Balai Besar Standardisasi dan Pelayanan Jasa Pencegahan Pencemaran Industri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21771/jrtppi.2023.v14.no1.p40-52

Abstract

The objective of this study was to optimize the operating conditions for an electrocatalytic method of producing biodiesel from local used frying oil (UFO). The effects of electrical voltages (5-30 V), methanol-to-oil molar ratios (4:1-8:1), KOH catalyst concentrations (0.5-1.25% w/w), and electrolysis time (30-120 min) on biodiesel yield were investigated. The highest biodiesel yield of 95.3% was obtained at a voltage of 30 V, methanol-to-oil molar ratio of 6:1, catalyst concentration of 1% w/w, and electrolysis time of 120 min. A regression model was developed to predict the optimum operating conditions, resulting in a maximum biodiesel yield of 95.54%. The predicted optimum operating conditions were a voltage of 24.4 V, methanol-to-oil molar ratio of 5.8:1, catalyst concentration of 1% w/w, and electrolysis time of 120 min. The net profit of the biodiesel business using local UFO as a feedstock was estimated to be IDR 738,000 per month based on a simple economic calculation. These findings demonstrate the potential for using electrocatalytic methods to produce biodiesel from local UFO, and the economic feasibility of producing biodiesel in small-scale industries.
A Low-Cost Instrument to Monitor Sulphur Dioxide Emissions Based on The DOAS Method Zen, Nur; Huboyo, Haryono Setiyo; Romadhon, Moch. Syarif; Fatkhurrahman, Januar Arif; Amrulah, Sidna Kosim
Jurnal Riset Teknologi Pencegahan Pencemaran Industri Vol. 14 No. 1 (2023): May
Publisher : Balai Besar Standardisasi dan Pelayanan Jasa Pencegahan Pencemaran Industri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21771/jrtppi.2023.v14.no1.p1-7

Abstract

Various techniques to measure SO2 concentration based on Differential Optical Absorption Spectroscopy (DOAS) have been widely developed and applied for various measurements. However, most of the applications are still relatively expensive. Some efforts have been made to reduce the cost by using Ultraviolet Light Emitting Diodes (LEDs) as light sources, showing promising results. Further reductions can be possibly made by providing an alternative to replace high spectral resolution spectrometers widely used in DOAS applications since those spectrometers are commercially expensive. This paper studies the feasibility of a DOAS instrument using a low-cost spectrometer and UV-LEDs as light sources. The resolution of the spectrometer is 0.7 nm. With this resolution, it is expected that the instrument hardly captures narrow band structures of SO2 optical absorption in the spectral range between 280 nm and 320 nm when measuring SO2 gas concentration lower than the limits of SO2 emissions regulated by the Indonesian government. To compensate for this drawback, narrow and broad bands of optical absorption structures are considered in the data analysis to achieve a detection limit far below the regulated limits. To capture the broadband structures, four UV-LEDs are used to cover spectral absorption from 250 nm to 320 nm. The instrument was calibrated using eight different standard concentrations of SO2. The correlation between the readings and the standard concentrations is high, indicated by the Pearson correlation coefficient of 0.9999. It was also found that the lowest concentration the instrument can distinguish from blank samples or the Limit of Detection is 16 ppm. However, the instrument can precisely measure concentrations higher than or equal to 25 ppm with a standard deviation of less than 10% of the mean concentration measured from five measurements. This is far below the required legal limits, below 229 ppm. After the calibration, the DOAS instrument was used to measure SO2 sampled from the emission of burning coals. To compare, a commercial SO2 sensor was used to measure the same gas. The results indicate that the difference in the readings between the two instruments is around 6% of the concentration.

Page 10 of 14 | Total Record : 137