cover
Contact Name
Januar Arif Fatkhurrahman
Contact Email
januarfa@gmail.com
Phone
+62816655080
Journal Mail Official
jurnalrisettppi@gmail.com
Editorial Address
Balai Besar Teknologi Pencegahan Pencemaran Industri Bagian Penelitian dan Pengembangan Jl. Kimangunsarkoro No 6 Semarang, Jawa Tengah, Indonesia 50136
Location
Kota semarang,
Jawa tengah
INDONESIA
Jurnal Riset Teknologi Pencegahan Pencemaran Industri
ISSN : 20870965     EISSN : 25035010     DOI : https://doi.org/10.21771
Jurnal Riset Teknologi Pencegahan Pencemaran Industri is published biannualy by the Balai Besar Teknologi Pencegahan Pencemaran Industri, this is Research and Development Institution under Badan Penelitian dan Pengembangan Industri of Ministry of Industry Republic Indonesia. The Jurnal Riset Teknologi Pencegahan Pencemaran Industri covers a broad spectrum of the science and technology of air, soil, and water pollution management and control while emphasizing scientific and engineering solutions to environmental issues encountered in industrialization. Particularly, interdisciplinary topics and multi-regional/global impacts of environmental pollution, advance material, and energy as well as scientific and engineering aspects of novel technologies are considered favorably. The scope of the Journal includes the following areas, but is not limited to: 1. Environmental Technology, within the area of air pollution technology, wastewater treatment technology, and management of solid waste and harzardous toxic substance 2. Process technology and simulation, technology and/or simulation in industrial production process aims to minimize waste and environmental degradation 3. Design Engineering, device engineering to improve process efficiency, measurement accuracy and to detect pollutant 4. Material fabrication, environmental friendly material fabrication as subtitution material for industry 5. Energy Conservation, process engineering / technology / conservation of resources for energy generation.
Articles 132 Documents
Optimization of Production Activated Carbon for Removal of Pharmaceuticals Waste Using Taguchi Method and Grey Relational Analysis Tri Jatmiko
Jurnal Riset Teknologi Pencegahan Pencemaran Industri Vol. 11 No. 2 (2020)
Publisher : Balai Besar Standardisasi dan Pelayanan Jasa Pencegahan Pencemaran Industri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21771/jrtppi.2020.v11.no2.p11-18

Abstract

The development of the pharmaceutical industry has led to increased environmental pollution by pharmaceutical waste. This encourages efforts to develop effective and inexpensive pharmaceutical waste management. One effort to handle pharmaceutical waste is to use activated carbon. In the manufacture of activated carbon there are several factors that affect the quality and performance of activated carbon produced. This research seeks to determine the optimum factors in making activated carbon and study its performance in adsorbing pharmaceutical waste. Multi-response analysis based on the Taguchi Grey relational analysis method is used to determine the optimum conditions. The most influential factors in the production of activated carbon, respectively, are pyrolysis temperature (800°C), ratio of precursors and activating agents (1:1), residence time (150 minutes) and finally the type of activator (KOH).
High Electric Production by Membraneless Microbial Fuel Cell with Up Flow Operation Using Acetate Wastewater Aris Mukimin; Nur Zen; Hanny Vistanty; Purwanto Agus
Jurnal Riset Teknologi Pencegahan Pencemaran Industri Vol. 11 No. 2 (2020)
Publisher : Balai Besar Standardisasi dan Pelayanan Jasa Pencegahan Pencemaran Industri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21771/jrtppi.2020.v11.no2.p19-27

Abstract

Microbial fuel cell (MFC) is a new proposed technology reported to generate renewable energy while simultaneously treating wastewater. Membraneless microbial fuel cell (ML-MFC) system was developed to eliminate the requirement of membrane which is expensive and prone to clogging while enhancing electricity generation and wastewater treatment efficiency. For this purpose, a reactor was designed in two chambers and connected via three pipes (1 cm in diameter) to enhance fluid diffusion. Influent flowrate was maintained by adjusting peristaltic pump at the base of anaerobic chamber. Carbon cloth (235 cm2) was used as anode and paired with gas diffusion layer (GDL) carbon-Pt as cathode. Anaerobic sludge was filtered and used as starter feed for the anaerobic chamber. The experiment was carried out by feeding synthetic wastewater to anaerobic chamber; while current response and potential were recorded. Performance of reactor was evaluated in terms of chemical oxygen demand (COD). Electroactive microbe was inoculated from anaerobic sludge and showed current response (0.55-0.65 mA) at 0,35 V, range of diameter 1.5-2 µm. The result of microscopics can showed three different species. The microbial performance was increased by adding ferric oxide 1 mM addition as acceptor electron. The reactor was able to generate current, voltage, and electricity power of 0.36 mA, 110 mV, and 40 mWatt (1.5 Watt/m2), respectively, while reaching COD removal and maximum coulomb efficiency (EC) of 16% and 10.18%, respectively.
Preliminary Study of Synthesis of Sodium Manganese Oxide Using Sol-Gel Method as Sodium Ion Battery Material Susanto Sigit Rahardi; Muhammad Ilham Bayquni; Bambang Sunendar Purwasasmita
Jurnal Riset Teknologi Pencegahan Pencemaran Industri Vol. 11 No. 2 (2020)
Publisher : Balai Besar Standardisasi dan Pelayanan Jasa Pencegahan Pencemaran Industri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21771/jrtppi.2020.v11.no2.p28-34

Abstract

Sodium ion battery is one of the promising alternatives to lithium ion battery. Sodium manganese oxide as the sodium ion battery catode material has been synthesized by modifying the sol-gel method used to obtain lithium manganese oxide. The precursors used were table salt and manganese chloride. The sol-gel process used was water solvent, citric acid as a chelating agent and chitosan as the template. Thermal decomposition and formation zone obtained from simple thermal analysis using furnace and digital scales. Calcination was carried out at 600°C and 850°C for 2 hours. Crystal properties and morphology were analyzed using XRD and SEM. Based on the analysis of XRD pattern, sodium manganese oxide crystals (Na0.7MnO2.05 JCPDS 27-0751) have been formed at both of the calcination temperature. Observed morphology of the sample showed the domination Mn3O4 JCPDS 18-0803 in accordance with crystalline phase identification. These results demonstrate that the modified sol-gel method could be used to obtain sodium manganese oxide as sodium ion battery cathode material.
Zinc Removal from ZnO Industrial Wastewater by Hydroxide Precipitation and Coagulation Methods: The Role of pH and Coagulant Dose Ratnawati Ratnawati; Marcelinus Christwardana; Sudirman Sudirma; Enjarlis Enjarlis
Jurnal Riset Teknologi Pencegahan Pencemaran Industri Vol. 11 No. 2 (2020)
Publisher : Balai Besar Standardisasi dan Pelayanan Jasa Pencegahan Pencemaran Industri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21771/jrtppi.2020.v11.no2.p35-42

Abstract

Liquid waste from the ZnO industry must be treated to meet the quality standards of wastewater into water bodies, according to the Minister of Environment Regulations No.5, 2014. It still contains 79 mg/L of Zn metal, cloudy with turbidity above 500 NTU, and COD value around 222 mg/L. This study aims to determine the effect of pH on reducing Zn metal and the coagulant dose to minimize turbidity and COD in liquid waste produced by the ZnO factory in Depok, West Java. The waste treatment has been carried out by adding alkaline to neutralize the acid conditions in the equalization basin. However, the results have not met the requirements. It is necessary to vary the pH (8.5; 9.0; 9.5; 10.0 and 10.5) to precipitate of Zn optimally, modify the dose of coagulants (50; 100 and 150 mg/L) and reaction times (10; 15 and 20 minutes) to reduce its turbidity and COD concentration. The best results were obtained at a pH of 9.5 with a coagulant dose of 50 mg/L and a reaction time of 10 minutes. This condition can reduce Zn concentration (79 to 3.71 mg/L), turbidity (557 to 1.42 NTU), COD (222 to 68 mg/L) with a removal efficiency of 95.3%; 99.7%; and 69.4% respectively. These values have met the standard requirements according to government regulations.
Processing of granite quarry solid waste into industrial high silica materials using leaching process with HCl concentration variation Hendronursito, Yusup; Amin, Muhammad; Sumardi, Slamet; Marjunus, Roniyus; Clarasati, Frista; Birawidha, David Candra; Muttaqqi, Muhammad Al; Isnugroho, Kusno
Jurnal Riset Teknologi Pencegahan Pencemaran Industri Vol. 11 No. 2 (2020)
Publisher : Balai Besar Standardisasi dan Pelayanan Jasa Pencegahan Pencemaran Industri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21771/jrtppi.2020.v11.no2.p43-50

Abstract

This study was aimed to increase granite's silica content using the leaching process with HCl concentration variation. The granite used in this study came from Lematang, South Lampung. This study aims to determine the effect of variations in HCl concentration, particle size, and rotational speed on the crystalline phase and chemical elements formed in the silica product produced from granite. The HCl concentration variations were 6.0 M, 7.2 M, 8.4 M, and 9.6 M, the variation in particle size used was 270 and 400 mesh. Variations in rotational speed during leaching were 500 and 750 rpm. Granite powder was calcined at 1000 ºC for 2 hours. Characterization was performed using X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), and Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP- OES). The results showed that the silica content increased with increasing HCl concentration, the finer the particle size, and the higher the rotational speed. XRF analysis showed that the silica with the highest purity was leached with 9.6 HCl with a particle size of 400 mesh and a rotational speed of of 750 rpm, which was 73.49%. Based on the results above, by leaching using HCl, the Si content can increase from before. The XRD diffractogram showed that the granite powder formed the Quartz phase.
PVDF-TiO2 Hollow Fibre Membrane For Water Desalination Elma, Muthia; Mahmud, Mahmud; Huda, Nurul; Assyaifi, Zaini L; Pratiwi, Elsa Nadia; Rezki, Mita Riani; Sari, Dewi Puspita; Rampun, Erdina Lulu Atika; Rahma, Aulia
Jurnal Riset Teknologi Pencegahan Pencemaran Industri Vol. 12 No. 1 (2021)
Publisher : Balai Besar Standardisasi dan Pelayanan Jasa Pencegahan Pencemaran Industri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21771/jrtppi.2021.v12.no1.p1-6

Abstract

The clean water crisis is increasing along with the increasing human population. Sea water is one of the largest water sources that can be utilized on the earth. However, the high salt concentration dissolved in seawater must be treated before it can use. Desalination is the directly technology for treating seawater with PVDF-TiO2 hollow fibre membrane via pervaporation process. The aim of this research was to determine the performance of PVDF-TiO2 hollow fibre membrane against variations in feed temperature in the artificial seawater pervaporation process. Method for fabrication membrane is using dry-wet spinning method. The result showed that the highest flux permeat occurred at feed temperature of 60ºC, namely 8.96 kg.m-2.h-1 with salt rejection > 92.86%. The result via SEM showed that of the membrane surface morphology, there is a white spot on the membrane surface is TiO2 because the dope solution is too thick. The PVDF-TiO2 hollow fiber membrane in this research is can be applied for seawater pervaporation.
Online Monitoring of Effluent Quality for Assessing the Effect of Wastewater Treatment Plant to Discharge into the Receiving Water: a review Andri Taufick Rizaluddin; Henggar Hardiani
Jurnal Riset Teknologi Pencegahan Pencemaran Industri Vol. 12 No. 1 (2021)
Publisher : Balai Besar Standardisasi dan Pelayanan Jasa Pencegahan Pencemaran Industri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21771/jrtppi.2021.v12.no1.p7-19

Abstract

In general, industries that use water in their production process will produce wastewater which usually contains a lot of polluting contaminants. It will affects the surrounding environment by contaminating the water bodies, which will adversely affect the health life of all living beings. Pollution that occurs in the some rivers in Indonesia has begun to raise concern for Indonesian Goverment. Some of the river locations already have heavy poluted status. The pollution is mostly caused by industrial waste and domestic waste along the river. Treatment plants for wastewater effluents are mandatory for any industry which discharges their wastewater effluents into the environment. Information on monitoring the quality of industrial wastewater is very important to be perceived by examining changes in water quality condition that are getting better or worse. It is necessary to develop a system that monitors the condition of industrial wastewater. Industrial wastewater monitoring is a device system that collects real time data. Online monitoring technology is one part that plays an important role in supporting activities to control marine environmental pollution. Real‐time monitoring of wastewater quality remains an unresolved problem to the wastewater treatment industry. One of the problem in most industries in Indonesia is that the operational and performance of wastewater treatment plants (WWTP) are still not optimal, and need to be improved. The application of industrial technology concept 4.0 and automation systems in the industry is expected to improve the WWTP supervision process which has advantages such as reducing down time, reducing consumption of raw materials, reducing the energy used, increasing productivity, improving product quality and making efficient use of resources and processes, so as to reduce industrial operating costs.
Removal of Total Coliform and TSS for Hospital Wastewater by Optimizing the Role of Typha Angustifolia and Fine Sand-Gravel Media in Horizontal Sub Surface Flow Constructed Wetland Akhmad, Abdul Gani
Jurnal Riset Teknologi Pencegahan Pencemaran Industri Vol. 12 No. 1 (2021)
Publisher : Balai Besar Standardisasi dan Pelayanan Jasa Pencegahan Pencemaran Industri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21771/jrtppi.2021.v12.no1.p20-31

Abstract

This study aims to evaluate the performance of a pilot-scale HSSF-CW utilizing Typha angustifolia and fine sand-gravel media in removing total coliform and TSS from hospital wastewater. Three pilot-scale HSSF-CW cells measuring 1.00 x 0.45 x 0.35 m3 were filled with gravel sand media with a diameter of 5 - 8 mm as high as 35 cm with a submerged media depth of 0.30 m. There were three treatments, namely the first cell (CW1) without plants, the second cell (CW2) was planted with a density of 12 Typha angustifolia plants, and the third cell (CW3) was planted with a density of 24 Typha angustifolia plants. The three HSSF-CW cells received the same wastewater load with total coliform and TSS contents of 91000 MPN / 100 mg and 53 mg / L, respectively, with Hydraulic Loading Rates 3,375 m3 per day. Wastewater was recirculated continuously to achieve the equivalent HSSF-CW area requirement. The experimental results show that the performance of CW3 is more efficient than CW1 and CW2 in total coliform and TSS removal for hospital wastewater. The pollutant removal efficiency at CW3 reached 91.76% for total coliform with one day hydraulic retention time and 81.00% for TSS with two days of hydraulic retention time. This study concludes that the HSSF-CW system using sand-gravel media with a diameter of 5 - 8 mm with a submerged media depth of 0.30 m and planted with Typha angustifolia with a tighter spacing proved to be more efficient in removing total coliform and TSS from hospital wastewater.
Potential Activated Carbon of Theobroma cacao L. Shell for Pool Water Purification in Politeknik Negeri Padang Yetri, Yuli
Jurnal Riset Teknologi Pencegahan Pencemaran Industri Vol. 12 No. 1 (2021)
Publisher : Balai Besar Standardisasi dan Pelayanan Jasa Pencegahan Pencemaran Industri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21771/jrtppi.2021.v12.no1.p32-38

Abstract

Research has been carried out to improve the quality of the yellow pool water. The water is used as a source of clean water for the academics of the Politeknik Negeri Padang, so it needs to be improved in accordance with the quality standards of clean water, and is suitable for daily use. The adsorption process was carried out using activated carbon of Theobroma cacao L. shells which was carbonated at 400oC for 1 hour and activated with H3PO4. Characterization of functional groups using Frontier Transform Infra Red (FTIR), and morphology of surface using Scanning Electron Microscopy (SEM). The quality of clean water standard analyzed is turbidity, Total Dissolved Solids (TDS), color, Total Suspended Solids (TSS), and Fe content. Functional group analysis exhibits that the activated carbon produced has a pattern of absorption with O-H, C-H, and C-O bond types. At the optimum condition of the activation process, a good adsorbent is absorbed in pool water purification at a flow rate of 5 mL/min with a mass of 2 grams. The analysis showed an efficiency decrease in turbidity value of 67%, Total Dissolved Solids (TDS) 71%, Color 97%, Total Suspended Solids (TSS) 86%, and Fe content 38%. Surface morphology of activated carbon showed the presence of pore cavities, and after the filtration process the cavities became saturated. This shows that there has been an absorption by activated carbon, so that the water becomes clear. Activated carbon of Theobroma cacao L.shell is very effective in the process of purifying pool water into clean water and fulfilling clean water standards, so it is suitable for are used.
Modelling Green Production Process in the Natural Dyes Batik Industry Using Cleaner Production Options Siti Ajizah
Jurnal Riset Teknologi Pencegahan Pencemaran Industri Vol. 12 No. 1 (2021)
Publisher : Balai Besar Standardisasi dan Pelayanan Jasa Pencegahan Pencemaran Industri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21771/jrtppi.2021.v12.no1.p39-54

Abstract

Sustainable production policy has encouraged batik industry to switch synthetic dyes to natural dyes. However, the production process still brings negative impacts on the environment as well as on humans. In order to solve this problem, the batik industry needs to develop green production model using cleaner production options. The purpose of this research is to design green production model for greening the natural dyes batik industry. The research was conducted in the natural dyes batik industry “Mbah Guru”. Mbah Guru batik industry is located in Lamongan, East Java. The research used a feasibility study by using Pay Back Period (PBP). The last decision making of cleaner production options was used Bayes Method to assess and determine cleaner production options based on technical, economical, and environmental aspects. The result showed that all of cleaner production options are feasible. "Fertilizer making from natural dyes" had the shortest payback period of 0,057 years and "two steps washing for all washing processes" had the longest payback period of 0,92 years. The highest criterion weight was the environmental aspect of 0.41 and followed by the economical aspect of 0.35. “Natural dyes wastewater reusing” became the most priority of the cleaner production options. The batik industry will be more profitable if it is able to properly implement the recommended process improvements so that the negative impacts, both the environment and on humans, can be minimized.

Page 8 of 14 | Total Record : 132