cover
Contact Name
Hendramawat Aski Safarizki
Contact Email
hendra.mawat@gmail.com
Phone
-
Journal Mail Official
hendra.mawat@gmail.com
Editorial Address
Jl. Letjend Sujono Humardani No.1, Kabupaten Sukoharjo, Jawa Tengah 57521
Location
Kab. sukoharjo,
Jawa tengah
INDONESIA
Media Komunikasi Dunia Ilmu Sipil (MoDuluS)
ISSN : 27149021     EISSN : 27149013     DOI : -
Core Subject : Engineering,
MoDuluS: Media Komunikasi Dunia Ilmu Sipil merupakan jurnal ilmiah nasional yang dikelola oleh Universitas Veteran Bangun Nusantara. Jurnal ini memiliki scope kajian bidang ilmu sipil atau teknik sipil. MoDuluS terbit berkala 6 bulanan, atau 2 kali dalam setahun, yakni Juni dan Desember.
Articles 6 Documents
Search results for , issue "Vol 6 No 1 (2024)" : 6 Documents clear
Aplikasi Machine Learning Method pada Pemetaan Kerawanan Tanah Longsor di Kabupaten Karanganyar Putri, Nada Hanifah; Dananjaya, Raden Harya; Surjandari, Niken Silmi
Media Komunikasi Dunia Ilmu Sipil (MoDuluS) Vol 6 No 1 (2024)
Publisher : Universitas Veteran Bangun Nusantara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32585/modulus.v6i1.4490

Abstract

Indonesia berada dalam zona iklim tropis yang rawan untuk mengalami bencana hidrometeorologi. Pemetaan kerawanan longsor merupakan salah satu upaya mitigasi yang dapat dilakukan untuk mengurangi dampak dari bencana tanah longsor. Penelitian ini bertujuan untuk membuat peta kerawanan longsor wilayah Kabupaten Karanganyar menggunakan machine learning yang diklasifikasikan menjadi lima kelas yaitu sangat rendah, rendah, sedang, tinggi, dan sangat tinggi. Metode yang digunakan untuk pembuatan model adalah Voting Classifier Ensemble Technique. Sembilan faktor pengondisi yang digunakan yaitu jarak terhadap jalan sekunder dan tersier, slope, TWI, elevasi, land use, litologi, NDVI, serta curah hujan. Algoritma machine learning didapatkan dari modul Scikit Learn. Kombinasi parameter yang digunakan yaitu pada metode Random Forest menggunakan parameter random_state = 0, n_estimators = 750, criterion = 'entropy', metode Support Vector Machine menggunakan parameter random_state = 0, Probability = True, gamma = 0.005, C = 1, metode K-Nearest Neighbors menggunakan parameter n_neighbors = 11, weights = 'distance', leaf_size = 20, dan metode Voting Classifier menggunakan parameter voting = 'soft', weights = [1,1,1] untuk parameter lain yang digunakan diatur sesuai dengan default modul. Model yang didapatkan memiliki AUC sebesar 0,9563 yang mendekati 1 sehingga dapat dikatakan bahwa model yang dimiliki performa yang baik untuk melakukan prediksi probabilitas longsor.
Penggunaan Metode Artificial Neural Network dalam Pembuatan Peta Kerentanan Longsor Wilayah Kabupaten Karanganyar Salwa, Atilla; Dananjaya, Raden Harya; Surjandari, Niken Silmi
Media Komunikasi Dunia Ilmu Sipil (MoDuluS) Vol 6 No 1 (2024)
Publisher : Universitas Veteran Bangun Nusantara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32585/modulus.v6i1.4493

Abstract

Tanah longsor menjadi bencana alam yang marak terjadi di Indonesia. Selama sepuluh tahun terakhir terdapat 2975 kejadian tanah longsor yang terjadi di Jawa Tengah, di mana 101 kejadian tanah longsor berada di Kabupaten Karanganyar. Penelitian ini bertujuan untuk membuat peta kerentanan longsor pada wilayah Kabupaten Karanganyar. Peta kerentanan akan dibagi menjadi lima kelas, yaitu sangat rendah, rendah, sedang, tinggi dan sangat tinggi dengan menggunakan metode natural breaks (jenk’s). Penelitian ini menggunakan 9 faktor pengondisi longsor yaitu jarak terhadap jalan sekunder, jarak terhadap jalan tersier, slope, topographic wetness index (TWI), elevasi, tata guna lahan (landuse), litologi, normalized difference vegetation index (NDVI), dan hujan. Pembuatan peta dilakukan dengan menggunakan Artificial Neural Network dengan bantuan modul scikit learn dan metode ten-folds cross validation digunakan sebagai metode validasi model yang dihasilkan. Nilai landslide density dihitung pada penelitian ini untuk evaluasi performa dari hasil klasifikasi kerentanan longsor. Parameter machine learning yang digunakan pada penelitian ini adalah hidden layer sizes, activation, maximum iteration dan random state. Performa model Artificial Neural Network yang dihasilkan menggunakan parameter tersebut menunjukkan hasil yang excellent.  Nilai AUC yang didapat pada penelitian ini sebesar 0,9140 dengan nilai ten-folds cross validation 0,7444.
Perbandingan Biaya dan Waktu Pekerjaan Pondasi Bore Pile dan Spun Pile Dabukke, Oktavia; Wacono, Sidiq
Media Komunikasi Dunia Ilmu Sipil (MoDuluS) Vol 6 No 1 (2024)
Publisher : Universitas Veteran Bangun Nusantara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32585/modulus.v6i1.4547

Abstract

Decision-making on the work methods used in a construction project is very important. As is the case in selecting the foundation work method to be used because the foundation has a very important role in carrying out substructure work. Choosing the right foundation work implementation method will expedite the work process so it is necessary to know how much cost and time is needed to carry out each foundation work. The purpose of this study is to find out how much the comparison of costs and time is required in carrying out bore pile and spun pile foundation work. The data needed to calculate costs and time for the two foundation work methods include the volume of work, the multiplier coefficient which refers to the Decree of the Minister of PUPR No. 1 of 2022, data on workforce, equipment, as well as the duration and method of carrying out the required work. Based on the researcher's analysis conducted by comparing the implementation of the two foundation work methods, namely using the bore pile and spun pile, the total cost of implementing the bore pile foundation work is Rp. 13,405,153,637 with an execution time of 189 days. Meanwhile, if you use a spun pile foundation, the cost is Rp. 11,590,475,275 with an execution time of 173 days. So that the two methods of carrying out the foundation work have a cost difference of Rp. 1,814,678,362 and a difference of 16 days.
Analisis Penentuan Parameter Gempa Untuk Perhitungan Stabilitas Bendungan Hidayawan, Ahmad; Kurniawan, Andri; Adhi, Bagas Wahyu; Setiyanto, Beni; Rahayu, Hayu
Media Komunikasi Dunia Ilmu Sipil (MoDuluS) Vol 6 No 1 (2024)
Publisher : Universitas Veteran Bangun Nusantara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32585/modulus.v6i1.5529

Abstract

Dams have an important role in controlling floods and providing water supply for infrastructure and community needs. The construction of the Pidekso Dam, as part of government efforts, requires research to determine earthquake parameters to ensure the safety of its structure. Pidekso Dam, located in the downstream Bengawan Solo river, is prone to earthquakes because it is adjacent to areas where earthquakes often occur. This study aims to determine the parameters of the earthquake coefficient Operating Basis Earthquakeee (OBE) and MaximumaDesignaEarthquakee (MDE) based on the 2017 earthquake map of Indonesia. Analysis was conducted to assess the risk of dam collapse due to earthquakes. Based on the dam risk class criteria, Pidekso Dam has a high risk class with a total weight of 30. For OBE earthquake analysis, the earthquake coefficient used ranges from 0.1 to 0.15 g, with a probability of being exceeded by 2% in 100 years. As for MDE earthquakes, the earthquake coefficient ranges from 0.5 to 0.6 g, with a repeat period T = 5000 years.
Potensi Aplikasi Bambu Sebagai Bahan Peredam kebisingan Operasional Kereta Api dengan Menggunakan Model Kristal Sonik Persegi Handayani, Dewi; Hartono, Widi; Nuha Fadhilah, Sarah
Media Komunikasi Dunia Ilmu Sipil (MoDuluS) Vol 6 No 1 (2024)
Publisher : Universitas Veteran Bangun Nusantara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32585/modulus.v6i1.5530

Abstract

Noise is the unwanted sound of a business or activity at a certain level and time that can cause disturbances to human health and environmental comfort. One of the transportation activities that can cause high noise is train. The effort to reduce the noise caused by the train is to build a noise-absorbing building in the form of sonic crystals. This research aims to analyze the potential application of bamboo with a square sonic crystal model as a noise reducer for railway activities. This research method is an experimental method using the method of Ministry of Environment No. 48 of 1996. The noise absorber is made of bamboo-based material arranged with a three-layer square lattice type, a diameter of 8.7 cm ± 0.2 cm, and a height of 2 meters. From the results of this study, it was found that the day and night equivalent noise level (LSM) using the barrier was 90.70 dB, 91.20 dB, 92.09 dB at a distance of 1, 2, and 3 meters. The potential of square lattice bamboo-based sonic crystals as a building damper can reduce the noise level by 8.87 dB (8.91%). Bamboo with this square lattice can be an alternative noise dampening building in the residential area around the railroad.
Perbandingan Metode Kalibrasi Sistem Celup Dan Chamber Untuk Vibrating Wire Piezometer In Situ Rovik, Mochamad; Wahyudi, Imam; Karlinasari, Rinda
Media Komunikasi Dunia Ilmu Sipil (MoDuluS) Vol 6 No 1 (2024)
Publisher : Universitas Veteran Bangun Nusantara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32585/modulus.v6i1.5544

Abstract

Piezometers are geotechnical monitoring instruments commonly used to obtain pore water pressure or groundwater level values. The most popular piezometer is the electric type (vibrating wire). The way this type of piezometer works is that the pore water pressure acting on the diaphragm causes a change in voltage and resonance on the vibrating wire. From the resonance of the vibrating wire will issue a frequency that will be recorded by the reading unit. This change in water force will affect the magnitude of the frequency read in the reading unit. In addition, seepage patterns, possible piping zones, and the effectiveness of seepage control used can be evaluated with the help of this tool. Currently piezometers are widely used for Monitoring embankment stability and safety, Measuring water load behind retaining walls, Assessing soil consolidation, Measurement of uplift pressure acting on structural foundations, Verification of seepage patterns and models, Monitoring slope stability, Monitoring water levels for environmental control, Assessment of tidal influence, Pump testing. Due to the importance of these instruments and their high sensitivity, it is necessary to calibrate them before installation to ensure that the equipment functions properly and accurately. Some methods of conducting in-situ calibration that are often used are the dip method and the pressurized chamber or cell method. This study will compare the two methods to determine the accuracy of the calibration implementation that can be used as a consideration for the acceptance of instruments from certain manufacturers. Based on the research that has been done, calibration with the chamber method is more accurate and acceptable after analysis. Because in its implementation it can be more thorough and there is not much external disturbance as in the dip method calibration method carried out in lakes or reservoirs where there is a lot of external disturbance.

Page 1 of 1 | Total Record : 6