cover
Contact Name
H Hadiyanto
Contact Email
hadiyanto@che.undip.ac.id
Phone
-
Journal Mail Official
ijred@live.undip.ac.id
Editorial Address
CBIORE office, Jl. Prof. Soedarto, SH-Tembalang Semarang
Location
Kota semarang,
Jawa tengah
INDONESIA
International Journal of Renewable Energy Development
ISSN : 22524940     EISSN : 27164519     DOI : https://doi.org/10.61435/ijred.xxx.xxx
The International Journal of Renewable Energy Development - (Int. J. Renew. Energy Dev.; p-ISSN: 2252-4940; e-ISSN:2716-4519) is an open access and peer-reviewed journal co-published by Center of Biomass and Renewable Energy (CBIORE) that aims to promote renewable energy researches and developments, and it provides a link between scientists, engineers, economist, societies and other practitioners. International Journal of Renewable Energy Development is currently being indexed in Scopus database and has a listing and ranking in the SJR (SCImago Journal and Country Rank), ESCI (Clarivate Analytics), CNKI Scholar as well as accredited in SINTA 1 (First grade category journal) by The Directorate General of Higher Education, The Ministry of Education, Culture, Research and Technology, The Republic of Indonesia under a decree No 200/M/KPT/2020. The scope of journal encompasses: Photovoltaic technology, Solar thermal applications, Biomass and Bioenergy, Wind energy technology, Material science and technology, Low energy architecture, Geothermal energy, Wave and tidal energy, Hydro power, Hydrogen production technology, Energy policy, Socio-economic on energy, Energy efficiency, planning and management, Life cycle assessment. The journal also welcomes papers on other related topics provided that such topics are within the context of the broader multi-disciplinary scope of developments of renewable energy.
Articles 709 Documents
Synthesis of rubber seed shell-derived porous activated carbons for promising supercapacitor application Rustamaji, Heri; Prakoso, Tirto; Devianto, Hary; Widiatmoko, Pramujo; Febriyanto, Pramahadi; Ginting, Simparmin br; Darmansyah, Darmansyah
International Journal of Renewable Energy Development Vol 14, No 2 (2025): March 2025
Publisher : Center of Biomass & Renewable Energy (CBIORE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61435/ijred.2025.60869

Abstract

This work investigates synthesizing activated carbon obtained from rubber seed shells utilizing several activating agents (KOH, CaCl2, and ZnCl2) for supercapacitor applications. Activated carbon was produced from a rubber seed shell using hydrothermal carbonization at 275 °C for 60 minutes and a 120-minute activation treatment at 800 °C. Various activating agents pronounced impacted the pore architecture, surface area, crystallinity, and level of graphitization, which collectively determined the electrochemical characteristics of the resulting materials. Incorporating activation agents enhances the specific surface area and influences the extent of graphitization of activated carbon. The specific surface area of activated carbon products ranges from 367 to 735.2 m² g⁻¹. Further investigation through electrochemical analysis, conducted with a carefully engineered two-electrode system, demonstrated a peak electrode capacitance value of 246 F g-1 at 50 mA g-1 for an ACZn-based supercapacitor. Supercapacitor cells’ energy and power densities reached significant levels, measuring 5.47 Wh kg-1 and 246 W kg-1, respectively. The RSS-derived activated carbon-based supercapacitor exhibited remarkable longevity in a 5000-cycle test, with consistent capacitance retention and coulombic efficiency of 100.11% and 100%, respectively. This work presents a sustainable pathway for producing activated carbon electrodes, contributing to the global circular economy and demonstrating considerable industrial potential.
Simulation model of active distribution network lines with high proportion distributed photovoltaic energy storage access Zhai, Di; Ye, Wenhua; Ma, Ming; Deng, Yunshu; Yang, Jingchen
International Journal of Renewable Energy Development Vol 14, No 2 (2025): March 2025
Publisher : Center of Biomass & Renewable Energy (CBIORE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61435/ijred.2025.60686

Abstract

To address the voltage stability and power quality issues prevalent in active distribution lines with a significant proportion of distributed PV energy storage, the study proposes a novel multi-time reconfiguration loss reduction model for active distribution networks. This model employs a phased optimization strategy and a security-constrained optimal tidal current technique to enhance efficiency and reliability. The proposed method can effectively allocate reactive power output based on reactive power capacity, achieving better reactive voltage control. The nodes with a smaller reactive power capacity, nodes 2 and 3, exhibited an output of 0.33 Mvar. In comparison, the nodes with a medium capacity, nodes 27 and 28, demonstrated an output of 0.71 Mvar. Finally, the nodes with the largest capacity, nodes 16 and 17, exhibited an output of up to 0.98 Mvar. This differentiated reactive power allocation strategy effectively optimized voltage control and ensured the stability of active distribution network lines. In addition, the annual system operating cost of the suggested method was reduced by 167,889.33 yuan. From this, the proposed method demonstrates significant benefits in both economic and environmental aspects. It provides a practical and feasible optimization strategy for the high proportion of distributed photovoltaic energy storage connected to active distribution networks, which can promote the transformation of energy structure.
A porous activated carbon derived from banana peel by hydrothermal activation two-step methods Hendronursito, Yusup; Astuti, Widi; Sabarman, Harsojo; Santoso, Iman
International Journal of Renewable Energy Development Vol 14, No 2 (2025): March 2025
Publisher : Center of Biomass & Renewable Energy (CBIORE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61435/ijred.2025.60847

Abstract

Activated carbon from banana peel waste through two stages of hydrothermal (HT) and physical activation processes has been carried out. The hydrothermal process was carried out at a temperature of 200 oC with a holding time of 2 or 6 hours. The hydrochar that had been obtained was then activated in the second stage with nitrogen gas flow (N2) at a temperature of 700 oC for 1 hour with a flow rate of 100 mL/min. The difference in treatment, without the HT process, two stages of activation, variations in activator agents (water, H3PO4, and PEG6000), water volume ratio and HT process holding time were studied for their effects on the specific surface area (SSA) and structure of activated carbon. SSA was measured using the Brunauer–Emmett–Teller (BET) adsorption method, x-ray crystallography was used to identify the crystalline phase and carbon structure parameters, and the surface morphology of activated carbon was observed using FESEM. The results showed that the activation method and process conditions greatly influenced the (SSA) of activated carbon. HT activation using a combination of activator agents produced an SSA reaching 476.9 m2/g. X-ray diffraction analysis showed that HT activation increased the degree of crystallization of activated carbon. The spherical surface structure of activated carbon was formed when H3PO4 was added, while the layered structure was formed when PEG6000 was used. Overall, the two-step activation preceded by the HT process with the addition of H3PO4 produced activated carbon with better SSA and carbon structure and has the potential to be used in wide applications such as EDLC supercapacitor electrode materials, battery cathodes, and adsorption materials.
The implementation of ozone cleaning on two-step texturization of p-type silicon wafer Md Daud, Mohd Norizam; Aadenan, Amin; Chin Haw, Lim; Mohd Nor, Najah Syahirah; Ibrahim, Mohd Adib; Mat Teridi, Mohd Asri
International Journal of Renewable Energy Development Vol 14, No 2 (2025): March 2025
Publisher : Center of Biomass & Renewable Energy (CBIORE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61435/ijred.2025.60805

Abstract

This study investigates the ozone treatment process that can be utilized across various fabrication stages to enhance the performance of silicon solar cells. The effectiveness of this treatment on p-type silicon surfaces was examined through the application of ozone dissolved in deionized water (DIO3) and the ultraviolet-ozone (UVO3) cleaning process prior to the two-step texturization procedure. The two-step texturization procedure applied in this work eliminates the use of silicon nitride (SiN) as an anti-reflective coating (ARC) layer for the elimination of toxic gases and leads to the environment-friendly fabrication of solar cells. An alternative to RCA, DIO3 and UVO3 represent promising chemical options for cleaning applications to eliminate the use of hazardous chemicals. It was discovered that the surface with the DIO3 treatment for 10 minutes resulted in a significantly enhanced surface quality on the p-type silicon wafer. In the DIO₃ cleaning, ozone is dissolved in deionized water  to create a highly oxidative solution capable of removing organic contaminants and particles effectively. In contrast, the UVO₃ treatment harnesses ultraviolet light to synthesize ozone directly on the wafer's surface, promoting the degradation of organic residues into volatile compounds, including CO₂ and H₂O. According to field emission scanning electron microscope (FESEM) micrographs and UV-visible spectrometer (UV-Vis) measurements, the textured wafer with DIO3 treatment improves the surface morphology and decreases the front surface reflection. As a result, the 10 minutes DIO3 treatments were reported optimal; the range size and height of the pyramid formed were 1.9–2.0 µm and 0.8–1.5 µm, offering a lower reflectivity value of below 12%, respectively. Results from the Atomic Force Microscope  (AFM) also confirm that the increase in average surface roughness from 203.65 nm to 300.27 nm was expected to improve light absorption. Moreover, this methodology leads to a considerable reduction in surface damage and is applicable to the silicon texturization process utilized in solar cell manufacturing.
Induction heating pyrolysis of landfilled plastic waste into valuable hydrocarbon fuels Phongsakul, Kittiphon; Chaiyaraksa, Chompoonut; Sricharoenchaikul, Viboon; Kachapongkun, Pongsakorn; Kaewpengkrow, Prangtip Rittichote
International Journal of Renewable Energy Development Vol 14, No 2 (2025): March 2025
Publisher : Center of Biomass & Renewable Energy (CBIORE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61435/ijred.2025.60569

Abstract

This research investigated the pyrolysis process for plastic waste treatment using induction heating. The induction system involved a coil wrapped around insulated material to generate heat. The plastic waste was sourced from the Refuse-Derived Fuel (RDF) sorting process from a 15-year-old landfill in the province of Nonthaburi, Thailand. The pyrolysis was performed at temperatures ranging from 400 to 600°C with a batch reactor. The highest yield of pyrolysis oil was 27.6% wt. at 600°C. Energy consumption for converting plastic waste into oil ranged between 9.50 and 13.36 kWh, with the highest consumption at 600 °C. The produced pyrolysis oil at 600°C achieved the highest HHV of 41.33 MJ/kg. The GC/MS analysis of the pyrolysis oil revealed an increase in aromatic and hydrocarbons (C5-C11 and C12-C20) with rising temperature. These carbon fractions are suitable replacements for heavy oil or diesel fuel, as low-oxygenated compounds, and hydrocarbon content in pyrolysis oil are desirable. The amount of char produced at 400°C was the highest, with a yield that ranged from 45.2% wt. to 67.0% wt. Moreover, the pyrolysis process has a significant advantage in lowering greenhouse gas emissions (0.21–0.25% vol.), which releases less CO2 than the combustion of plastic waste. The findings therefore suggest that pyrolysis oil, which is produced under optimum conditions, can be used as a substitute liquid fuel in the industrial sector, and is consistent with the circular economy's concepts, promoting sustainability and utilizing resource efficiency.
Optimization of fuel cell switching control based on power following strategy in fuel cell hybrid electrical vehicle Deng, Leipengyun; Mohd Radzi, Mohd Amran; Shafie, Suhaidi Bin; Hassan, Mohd Khair
International Journal of Renewable Energy Development Vol 14, No 2 (2025): March 2025
Publisher : Center of Biomass & Renewable Energy (CBIORE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61435/ijred.2025.60780

Abstract

Fuel cell hybrid electric vehicles (FCHEVs), integrating fuel cell (FC) with batteries, have attracted significant research attention due to their emission-free operation, enhanced efficiency, and quick refuelling capabilities. Efficient energy management strategies (EMSs) are crucial in allocating energy between these sources and controlling power flow from FCs and batteries. The power following control (PFC) strategy has emerged as one of the most extensively utilized approaches in automotive applications owing to its superior real-time performance, ease of calculation, and straightforward design. This paper proposes a PFC-optimized strategy focused on improving FC durability and fuel economy by optimizing the switching control to fill the gap in frequent toggling of FC caused by traditional PFC strategy. The outcomes derived from the co-simulation conducted with AVL CRUISE and MATLAB/Simulink for developing complete FCHEV model and EMS model, respectively, indicate that under the China Light-duty Vehicle Test Cycle for Passenger Car (CLTC-P), the PFC-optimized strategy, in comparison to the traditional PFC strategy, reduces battery state of charge (SOC) fluctuations by 68.93% and decreases hydrogen consumption per 100 km by 2.71%. Meanwhile, this strategy is also proven effective in other operating conditions and reduces fuel cell switching times during operation. Therefore, the PFC-optimized strategy suggested in this study contributes to better performance in battery SOC, battery life, FC durability and fuel economy.
Response surface optimization of biodiesel synthesis from crude palm oil (CPO) using CaO/silica gel heterogeneous catalyst based on blood cockle shell and coconut fiber Nurhayati, Nurhayati; Awaluddin, Amir; Mulyani, Yenni
International Journal of Renewable Energy Development Vol 14, No 2 (2025): March 2025
Publisher : Center of Biomass & Renewable Energy (CBIORE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61435/ijred.2025.60855

Abstract

This study successfully synthesized a hybrid catalyst CaO-silica gel from environmentally friendly raw materials, CaO derived from blood clam shells and silica gel obtained from coconut fiber waste ash. The catalytic activity was evaluated in the synthesis of biodiesel from crude palm oil (CPO). The CaO-Silica gel catalyst was synthesized by the wet impregnation method with variations of silica gel, namely 5, 10 and 15 wt%. The catalyst was characterized using XRD, XRF, SEM, and BET analysis. The results showed a decrease in CaO content with increasing silica gel concentration, while XRD analysis confirmed the presence of lime, portlandite, Ca₂SiO₄, and silica oxide minerals. The addition of silica gel reduced the crystal size and crystallinity and increased the surface area of the catalyst. Optimization of biodiesel production was carried out using the Response Surface Methodology (RSM), considering variables such as temperature, reaction time, molar ratio of oil to methanol, and catalyst loading. The highest biodiesel yield was obtained using 5% CaO/silica gel catalyst at a temperature of 65°C, a reaction time of 60 minutes, an oil-methanol molar ratio of 1:9, and a catalyst addition of 2%, resulting in a biodiesel yield of 99.52%. In addition, the methyl ester content reached 99.21% using a 10% CaO/silica gel catalyst. The resulting biodiesel met ASTM and EN standards, except for the acid value.
Green intelligent building design based on integrated photovoltaic/thermal building Wang, Tianchi
International Journal of Renewable Energy Development Vol 14, No 3 (2025): May 2025
Publisher : Center of Biomass & Renewable Energy (CBIORE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61435/ijred.2025.60621

Abstract

With the increasingly prominent contradiction between energy consumption and environmental governance, the integrated photovoltaic/thermal building system has broad development prospects in building energy conservation. However, the improper placement of photovoltaic solar thermal collectors results in the inability of solar energy systems to maximize energy conversion. In order to combine photoelectric photothermal technology with architectural design, realize the efficient conversion and utilization of solar energy, reduce the dependence on traditional energy sources, and reduce building energy consumption, research based on the comprehensive utilization technology of solar photovoltaic photothermal building, designed an integrated photovoltaic photothermal building system, and optimized the system for different light resources and environmental conditions of solar photovoltaic photothermal collectors. The system achieved zero energy operation when the total energy consumption in winter was 798.92kW·h. The cumulative power supply and heat generation of the integrated photovoltaic/thermal building system throughout the winter were 214.63kW·h and 79.68kW·h. This study uses solar photovoltaic solar thermal collectors to replace roof coverings or insulation layers, which declines the impact of solar energy on buildings, and avoids duplicate investment and cuts cost. This study can improve power generation efficiency, meet heating needs, enhance resource utilization efficiency, reduce environmental pollution, and promote the sustainable development of the construction industry
Superior thermal dissipation through natural convection in a passive cooling system using multidirectional tapered fin heat sinks (MTFHS) Razali, Siti Nuraisyah; Ibrahim, Adnan; Fazlizan, Ahmad; Al-Aasam, Anwer B.; Rahmat, Muhammad Aqil Afham; Ishak, Muhammad Amir Aziat
International Journal of Renewable Energy Development Vol 14, No 3 (2025): May 2025
Publisher : Center of Biomass & Renewable Energy (CBIORE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61435/ijred.2025.60742

Abstract

The increasing prominence of photovoltaic modules as a cornerstone of sustainable energy systems is well-established.  Nevertheless, the deleterious impact of thermal dissipation, often resulting in efficiency losses of 10-15%, remains a significant challenge.  Many researches were exploring new cooling techniques to improve the efficiency of solar panels.  One promising approach is the Multidirectional Tapered Fin Heat Sink (MTFHS).  This innovative design can capture wind from multiple directions, making it more effective outdoors.  This study aims to investigate the MTFHS for photovoltaic module cooling. A comprehensive numerical model was developed using COMSOL software simulations to investigate the thermal behavior of photovoltaic modules equipped with multidirectional tapered fins.  The model was employed to simulate heat transfer under various solar irradiance levels from 400 W/m2 to 1000 W/m2 while maintaining a constant 30 ℃ ambient temperature and 1 m/s wind speed to isolate the impact of solar radiation.  Additionally, the direction of incoming airflow was systematically varied from 0° to 90° in 18° increments to analyze its influence.  The model considered key multidirectional tapered fin design parameters like fin spacing, number of fins, and fin height.  Real-world testing further validated the model's predictions.  The findings demonstrate that multidirectional tapered fins significantly reduce PV module temperature, achieving a remarkable 8.61% reduction compared to the bare and conventional rectangular fins.  The maximum temperature reached with MTFHS was 56.73 ℃.  Furthermore, multidirectional tapered fins consistently outperformed other configurations across various wind orientations, achieving temperature reductions of over 10 %.  These findings highlight the exceptional effectiveness of multidirectional tapered fins in outdoor environments, especially where wind direction is unpredictable.  A correlation analysis revealed excellent agreement (93-96 %) between model and experimental results, further validating the efficacy of the multidirectional tapered fin design.  
Formulation of Nb-doped ZnO nanoparticles towards improved photo conversion performance via luminescent down-shifting of the incident spectrum Jusoh, Yaumee Natasha; Aliyaselvam, Omsri Vinasha; Zainal, Nurul Aliyah; Mustafa, Ahmad Nizamuddin; Mohd Shah, Ahmad Syahiman; Salehuddin, Fauziyah; Arith, Faiz
International Journal of Renewable Energy Development Vol 14, No 3 (2025): May 2025
Publisher : Center of Biomass & Renewable Energy (CBIORE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61435/ijred.2025.60983

Abstract

The quest for optimal solar energy utilization has prompted an investigation into materials and techniques, establishing luminescent down shifting (LDS). This method converts short-wavelength photons into longer wavelengths thus expanding the range of absorption. This may further enhance the efficiency of solar cell power conversion. Herein, the Zinc Oxide (ZnO) nanoparticle is introduced as a promising candidate for LDS, mainly due to its ability to convert light effectively and cost-savvy. This research delves into enhancing Niobium (Nb) doped ZnO particles that exhibit photoluminescent characteristics to improve energy conversion efficiency. The synthesis of 1% mol of Nb-doped ZnO nanoparticles on indium tin oxide (ITO) films was achieved using a low-temperature hydrothermal technique, varying the growth duration. Extensive analysis using XRD, SEM, and UV-Vis spectroscopy revealed that the optimal outcomes were achieved with an 8-hour growing period. The analysis revealed a hexagonal wurtzite crystal structure, characterized by prominent peaks on the (111) plane and a crystallite size of 37.18 nm. A morphology study indicated that the ZnO nanorods exhibited a randomly uniform oriented arrangement and a densely formed structure measuring 0.77 ± 0.02 μm. The samples exhibited promising optoelectronic properties based on the analysis, such as a characteristic bandgap of 3.35 eV, a transmittance of 46.54%, and an absorbance of 0.33 a.u .Furthermore, the electrical conductivity of the Nb-doped ZnO films was recorded at 1.62 mΩ⁻¹cm⁻¹.These findings suggest that controlling the Nb growth offers a promising avenue for optimizing the performance of Nb:ZnO nanoparticles for advanced solar energy conversion applications.

Filter by Year

2012 2026


Filter By Issues
All Issue Vol 15, No 2 (2026): March 2026 Vol 15, No 1 (2026): January 2026 Vol 14, No 6 (2025): November 2025 Vol 14, No 5 (2025): September 2025 Vol 14, No 4 (2025): July 2025 Vol 14, No 3 (2025): May 2025 Vol 14, No 2 (2025): March 2025 Vol 14, No 1 (2025): January 2025 Accepted Articles Vol 13, No 6 (2024): November 2024 Vol 13, No 5 (2024): September 2024 Vol 13, No 4 (2024): July 2024 Vol 13, No 3 (2024): May 2024 Vol 13, No 2 (2024): March 2024 Vol 13, No 1 (2024): January 2024 Vol 12, No 6 (2023): November 2023 Vol 12, No 5 (2023): September 2023 Vol 12, No 4 (2023): July 2023 Vol 12, No 3 (2023): May 2023 Vol 12, No 2 (2023): March 2023 Vol 12, No 1 (2023): January 2023 Vol 11, No 4 (2022): November 2022 Vol 11, No 3 (2022): August 2022 Vol 11, No 2 (2022): May 2022 Vol 11, No 1 (2022): February 2022 Vol 10, No 4 (2021): November 2021 Vol 10, No 3 (2021): August 2021 Vol 10, No 2 (2021): May 2021 Vol 10, No 1 (2021): February 2021 Vol 9, No 3 (2020): October 2020 Vol 9, No 2 (2020): July 2020 Vol 9, No 1 (2020): February 2020 Vol 8, No 3 (2019): October 2019 Vol 8, No 2 (2019): July 2019 Vol 8, No 1 (2019): February 2019 Vol 7, No 3 (2018): October 2018 Vol 7, No 2 (2018): July 2018 Vol 7, No 1 (2018): February 2018 Vol 6, No 3 (2017): October 2017 Vol 6, No 2 (2017): July 2017 Vol 6, No 1 (2017): February 2017 Vol 5, No 3 (2016): October 2016 Vol 5, No 2 (2016): July 2016 Vol 5, No 1 (2016): February 2016 Vol 4, No 3 (2015): October 2015 Vol 4, No 2 (2015): July 2015 Vol 4, No 1 (2015): February 2015 Vol 3, No 3 (2014): October 2014 Vol 3, No 2 (2014): July 2014 Vol 3, No 1 (2014): February 2014 Vol 2, No 3 (2013): October 2013 Vol 2, No 2 (2013): July 2013 Vol 2, No 1 (2013): February 2013 Vol 1, No 3 (2012): October 2012 Vol 1, No 2 (2012): July 2012 Vol 1, No 1 (2012): February 2012 More Issue