cover
Contact Name
Tika Hairani
Contact Email
jurnal@rmpi.brin.go.id
Phone
+6289674134425
Journal Mail Official
manessa@ui.ac.id
Editorial Address
Gedung S, BAKOSURTANAL, Jln. Raya Jakarta – Bogor Km 46 Cibinong, INDONESIA
Location
Kota bogor,
Jawa barat
INDONESIA
The International Journal of Remote Sensing and Earth Sciences (IJReSES)
ISSN : 02166739     EISSN : 2549516X     DOI : https://doi.org/10.55981/ijreses
Core Subject : Science,
The International Journal of Remote Sensing and Earth Sciences (IJReSES), published by Badan Riset dan Inovasi Nasional (BRIN) in collaboration with the Ikatan Geografi Indonesia (IGI) and managed by the Department of Geography Universitas Indonesia, is a pivotal platform in the global dissemination of research in earth sciences and remote sensing. It aims to enrich the literature in these fields and serves as a key resource, particularly in Indonesia and Asian countries, while extending its reach worldwide. The journal is instrumental in complementing the body of knowledge in Remote Sensing and Earth Sciences and is committed to fostering the participation of young scientists, especially from Indonesia and Asian countries. Scope and Focus: IJReSES encompasses a wide spectrum of topics related to remote sensing and earth sciences, including but not limited to: - Remote sensing technologies and methodologies - Geospatial data acquisition, processing, and analysis - Earth observation and satellite imagery - Geographic Information Systems (GIS) - Environmental monitoring and management - Climate change and its impacts - Natural resource management - Land use and land cover change - Urban and rural development - Disaster risk reduction and response - Geology and geomorphology - Soil and water sciences - Biodiversity and ecosystem studies
Articles 327 Documents
THE UTILIZATION OF REMOTE SENSING AND GEOGRAPHIC INFORMATION SYSTEMS FOR ANALYSIS OF LAND SUITABILITY FOR THE GROWING OF CIPLUKAN (PHYSALIS ANGULATA L.) Nur Adliani; Nirmawana Simarmata; Heriansyah
International Journal of Remote Sensing and Earth Sciences Vol. 16 No. 1 (2019)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/ijreses.v16i1.13830

Abstract

Remote sensing data and geographic information systems are widely used for land suitability analysis for crops such as coffee and corn. This study aims to analyze and map suitable land for the plant known locally as ciplukan (Physalis angulata L.). Â As the cultivation of this plant is expected to be developed by the Institute of Technology of Sumatra, analysis of this type is needed. The parameters used in this study were slope, land use, rainfall and soil type. Information extraction from remote sensing data was carried out via visual interpretation of aerial photography used to create land-cover maps. Shuttle RADAR Topographic Mission (SRTM) data was converted from digital surface model (DSM) to digital terrain model (DTM) to provide elevation information. Land suitability analysis was performed using a scoring method and overlay analysis. The results obtained from the analysis identified several classes of land suitability for Physalis angulata L., categorized as suitable, less suitable, and not suitable. The less suitable class, scored at 9 to 11, comprised a total area of 180.96 ha, while the suitable area, scored at 12, comprised a total area of 49.1 ha.
SPECTRAL ANALYSIS OF THE HIMAWARI-8 DATA FOR HOTSPOT DETECTION FROM LAND/FOREST FIRES IN SUMATRA Hana Listi Fitriana; Sayidah Sulma; Any Zubaidah; Suwarsono; Indah Prasasti
International Journal of Remote Sensing and Earth Sciences Vol. 15 No. 1 (2018)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2018.v15.a2836

Abstract

Himawari-8 is the last generation of the low spatial resolution satellite imagery that has capability to detect the thermal variation on the earth of every 10 minute. This must be very potential to be used for detecting land/forest fire. This paper has explored the spectral prospective of the Himawari-8 for detecting land/forest fire hotspot. The main objective for this study is to identify the potential use of Himawari-8 for detecting of land forest fire hotspot. The study area was performed in Ogan Komering Ilir, South of Sumatra, which on 2015 occur great forest/land fire event. The main process included in this study are image projection, training sample collection and spectral statistical analysis measured by calculate statistic, they are average values, standard deviation values from reflectance visible band value and brightness temperature value, beside that validation of data obtained from medium resolution data of Landsat 8 with the similar acquisition time. The study found that the Himawari-8 has good capacity to identify land/forest fire hotspot as expressed for high accuracy assessment using band 3 and band 7.
RETRIEVING COASTAL SEA SURFACE TEMPERATURE FROM LANDSAT-8 TIRS FOR WANGI-WANGI ISLAND, WAKATOBI, SOUTHEAST SULAWESI, INDONESIA Eko Susilo; Rizki Hanintyo; Adi Wijaya
International Journal of Remote Sensing and Earth Sciences Vol. 16 No. 1 (2019)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/ijreses.v16i1.13833

Abstract

The new Landsat generation, Landsat-8, is equipped with two bands of thermal infrared sensors (TIRS). The presence of two bands provides for improved determination of sea surface temperature (SST) compared to existing products. Due to its high spatial resolution, it is suitable for coastal zone monitoring. However, there are still significant challenges in converting radiance measurements to SST, resulting from the limitations of in-situ measurements. Several studies into developing SST algorithms in Indonesia waters have provided good performance. Unfortunately, however, they have used a single-band windows approach, and a split-windows approach has yet to be reported. In this study, we investigate both single-band and split-window algorithms for retrieving SST maps in the coastal zone of Wangi-Wangi Island, Wakatobi, Southeast Sulawesi, Indonesia. Landsat-8 imagery was acquired on February 26, 2016 (01: 51: 44.14UTC) at position path 111 and and row 64. On the same day, in-situ SST was measured by using Portable Multiparameter Water Quality Checker – 24. We used the coefficient of correlation (r) and root mean square error (RMSE) to determine the best algorithm performance by incorporating in-situ data and the estimated SST map. The results showed that there were differences in brightness temperature retrieved from TIRS band10 and band 11. The single-band algorithm based on band 10 for Poteran Island clearly showed superior performance (r = 69.28% and RMSE = 0.7690°C). This study shows that the split-window algorithm has not yet produced a accurate result for the study area.
BATHYMETRY EXTRACTION FROM SPOT 7 SATELLITE IMAGERY USING RANDOM FOREST METHODS Kuncoro Teguh Setiawan; Nana Suwargana; Devica Natalia BR Ginting; Masita Dwi Mandini Manessa; Nanin Anggraini; Syifa Wismayati Adawiah; Atriyon Julzarika; Surahman; Syamsu Rosid; Agustinus Harsono Supardjo
International Journal of Remote Sensing and Earth Sciences Vol. 16 No. 1 (2019)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/ijreses.v16i1.13834

Abstract

The scope of this research is the application of the random forest method to SPOT 7 data to produce bathymetry information for shallow waters in Indonesia. The study aimed to analyze the effect of base objects in shallow marine habitats on estimating bathymetry from SPOT 7 satellite imagery. SPOT 7 satellite imagery of the shallow sea waters of Gili Matra, West Nusa Tenggara Province was used in this research. The estimation of bathymetry was carried out using two in-situ depth-data modifications, in the form of a random forest algorithm used both without and with benthic habitats (coral reefs, seagrass, macroalgae, and substrates). For bathymetry estimation from SPOT 7 data, the first modification (without benthic habitats) resulted in a 90.2% coefficient of determination (R2) and 1.57 RMSE, while the second modification (with benthic habitats) resulted in an 85.3% coefficient of determination (R2) and 2.48 RMSE. This research showed that the first modification achieved slightly better results than the second modification; thus, the benthic habitat did not significantly influence bathymetry estimation from SPOT 7 imagery
THREE-WAY ERROR ANALYSIS OF SEA SURFACE TEMPERATURE (SST) BETWEEN HIMAWARI-8, BUOY, AND MUR SST IN SAVU SEA Bambang Sukresno; Rizki Hanintyo; Denny Wijaya Kusuma; Dinarika Jatisworo; Ari Murdimanto
International Journal of Remote Sensing and Earth Sciences Vol. 15 No. 1 (2018)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2018.v15.a2855

Abstract

Variance errors of Himawari-8, buoy, and Multi-scale Ultra-high Resolution (MUR) SST in Savu Sea have been investigated. This research used level 3 Himawari-8 hourly SST, in situ measurement of buoy, and daily MUR SST in the period of December 2016 to July 2017. The data were separated into day time data and night time. Skin temperature of Himawari-8 and subskin tempertaure of MUR SST were corrected with the value of 15∆Tdept">  before compared with buoy data. Hourly SST of Himawari-8 and buoy data were converted to daily format by averaging process before collocated with MUR SST data. The number of 2,264 matchup data are obtained. Differences average between Himawari-8, buoy and MUR SST were calculated to get the value of variance (Vij). Using three-way error analysis, variance errors of each observation type can be known. From the analysis results can be seen that the variance error of Himawari-8, buoy and MUR SST are 2.5 oC, 0.28oC and 1.21oC respectively. The accuracy of buoy data was better than the other. With a small variance errors, thus buoy data can be used as a reference data for validation of SST from different observation type.
THE USE OF C-BAND SYNTHETIC APERTURE RADAR SATELLITE DATA FOR RICE PLANT GROWTH PHASE IDENTIFICATION Anugrah Indah Lestari; Dony Kushardono
International Journal of Remote Sensing and Earth Sciences Vol. 16 No. 1 (2019)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/ijreses.v16i1.13836

Abstract

Identification of the rice plant growth phase is an important step in estimating the harvest season and predicting rice production. It is undertaken to support the provision of information on national food availability. Indonesia’s high cloud coverage throughout the year means it is not possible to make optimal use of optical remote sensing satellite systems. However, the Synthetic Aperture Radar (SAR) remote sensing satellite system is a promising alternative technology for identifying the rice plant growth phase since it is not influenced by cloud cover and the weather. This study uses multi-temporal C-Band SAR satellite data for the period May–September 2016. VH and VV polarisation were observed to identify the rice plant growth phase of the Ciherang variety, which is commonly planted by farmers in West Java. Development of the rice plant growth phase model was optimized by obtaining samples spatially from a rice paddy block in PT Sang Hyang Seri, Subang, in order to acquire representative radar backscatter values from the SAR data on the age of certain rice plants. The Normalised Difference Polarisation Index (NDPI) and texture features, namely entropy, homogeneity and the Grey-Level Co-occurrence Matrix (GLCM) mean, were included as the samples. The results show that the radar backscatter value (σ0) of VH polarisation without the texture feature, with the entropy texture feature and GLCM mean texture feature respectively exhibit similar trends and demonstrate potential for use in identifying and monitoring the rice plant growth phase. The rice plant growth phase model without texture feature on VH polarisation is revealed as the most suitable model since it has the smallest average error.
Back Pages IJReSES Vol. 16, No. 2 (2019) Journal Editor
International Journal of Remote Sensing and Earth Sciences Vol. 16 No. 2 (2019)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2019.v16.a3344

Abstract

Back Pages IJReSES Vol. 16, No. 2 (2019)
DETECTING DEFORMATION DUE TO THE 2018 MERAPI VOLCANO ERUPTION USING INTERFEROMETRIC SYNTHETIC APERTURE RADAR (INSAR) FROM SENTINEL-1 TOPS Suwarsono; Indah Prasasti; Jalu Tejo Nugroho; Jansen Sitorus; Rahmat Arief; Khalifah Insan Nur Rahmi; Djoko Triyono
International Journal of Remote Sensing and Earth Sciences Vol. 16 No. 1 (2019)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/ijreses.v16i1.13838

Abstract

This paper describes the application of Sentinel-1 TOPS (Terrain Observation with Progressive Scans), the latest generation of SAR satellite imagery, to detect displacement of the Merapi volcano due to the May–June 2018 eruption. Deformation was detected by measuring the vertical displacement of the surface topography around the eruption centre. The Interferometric Synthetic Aperture Radar (InSAR) technique was used to measure the vertical displacement. Furthermore, several Landsat-8 Thermal Infra Red Sensor (TIRS) imageries were used to confirm that the displacement was generated by the volcanic eruption. The increasing temperature of the crater was the main parameter derived using the Landsat-8 TIRS, in order to determine the increase in volcanic activity. To understand this phenomenon, we used Landsat-8 TIRS acquisition dates before, during and after the eruption. The results show that the eruption in the May–June 2018 period led to a small negative vertical displacement. This vertical displacement occurred in the peak of volcano range from -0.260 to -0.063 m. The crater, centre of eruption and upper slope of the volcano experienced negative vertical displacement. The results of the analysis from Landsat-8 TIRS in the form of an increase in temperature during the 2018 eruption confirmed that the displacement detected by Sentinel-1 TOPS SAR was due to the impact of volcanic activity. Based on the results of this analysis, it can be seen that the integration of SAR and thermal optical data can be very useful in understanding whether deformation is certain to have been caused by volcanic activity.
BIOMASS ESTIMATION MODEL FOR MANGROVE FOREST USING MEDIUM-RESOLUTION IMAGERIES IN BSN CO LTD CONCESSION AREA, WEST KALIMANTAN Sendi Yusandi; I Nengah Surati Jaya; Fairus Mulia
International Journal of Remote Sensing and Earth Sciences Vol. 15 No. 1 (2018)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2018.v15.a2683

Abstract

Mangrove forest is one of the forest ecosystem types that have the highest carbon stock in the tropics. Mangrove forests have a good assimilation capability with their environmental elements as well as on carbon sequestration. However, the availability of data and information on carbon storage, especially on tree biomass content of mangrove is still limited. Conventionally, an accurate estimation of biomass could be obtained from terrestrial measurements, but those methods are very costly and time-consuming. This study offered an alternative solution to overcome these limitations by using remote sensing technology, i.e. by using Landsat 8 and SPOT 5. The objective of this study is to formulate the biomass estimation model using medium resolution satellite imagery, as well as to develop a biomass distribution map based on the selected model. The study found that the NDVI of Landsat 8 and SPOT 5 have considerably high correlation coefficients with the standing biomass with a value of higher than 0.7071. On the basis of the values of aggregation deviation, mean deviation, bias, RMSE, χ², R², and s, the best model for estimating the mangrove stand biomass for Landsat 8 is B=0.00023404 e(20 NDVI) with the R² value of 77.1% and B=0.36+25.5 NDVI² with the R² value of 49.9% for SPOT 5. In general, the concession area of Bina Silva Nusa (BSN) Group (PT Kandelia Alam and PT Bina Ovivipari Semesta) have the potential of biomass ranging from 45 to 100 ton per ha.
Front Pages IJReSES Vol. 15, No. 2 (2018) Editor Journal
International Journal of Remote Sensing and Earth Sciences Vol. 15 No. 2 (2018)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Front Pages IJReSES Vol. 15, No. 2 (2018)