Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : Jurnal Rekayasa Material, Manufaktur

Analisis Kekasaran Permukaan Cast Iron Menggunakan Cairan Pendingin Berbasis Nabati Pada Proses Face milling Arya Rudi Nasution; Affandi Affandi; Khairul Umurani; Ahmad Marabdi Siregar
Rekayasa Material, Manufaktur dan Energi Vol 4, No 2: September 2021
Publisher : Fakultas Teknik UMSU

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30596/rmme.v4i2.8073

Abstract

The machining process is a major activity in the industry, especially in the automotive industry. The machining process is inseparable from the coolant (coolant), where the role of the coolant in the machining process is to act as cool working conditions, material cleaning, and corrosion prevention. The use of cutting fluid has a negative impact when waste management is not carried out properly, and it will be damaging to the environment and public health. In order to reduce environmental and health damage, development and research have now been carried out for the use of vegetable-based cutting fluid. cutting fluid vegetable-based are biodegradable, eco-friendly, odorless, and non-toxic. This study wants to compare the value of surface roughness using CO (coconut oil) and dromus in face milling machining. The machine used in this research is the conventional Emco F3 milling machine and the tools used are the TPKN 22VC2 series carbide insert tools and the workpiece material used is cast iron (gray cast iron). the value of surface roughness by measuring the roughness using the TR200 surface roughness tool. The results of roughness observations show that the surface roughness value using CO cutting fluid at a cutting speed of 60 mm/min is 1,297 Ra, at a cutting speed of 70 mm/min the roughness value is 0.877 Ra and at a cutting speed of 80 mm/min, it is 0.429 Ra. While the results of measuring surface roughness on the material using a coolant dromus, cutting speed of 60 mm/min are 0.811 Ra, at a cutting speed of 70 mm/min the surface roughness value is 0.804 and at a cutting speed of 80 mm/min the surface roughness value is 0.698 Ra. So can the conclusion be that cutting fluid CO is good to use as a coolant at high cutting speeds.
Pengaruh Cairan Pendingin Terhadap Kekasaran Permukaan Benda Kerja Pada Proses Face Milling Arya Rudi Nasution; Affandi .; Z. Fuadi
Rekayasa Material, Manufaktur dan Energi Vol 3, No 1: Maret 2020
Publisher : Fakultas Teknik UMSU

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (683.646 KB) | DOI: 10.30596/rmme.v3i1.4524

Abstract

Coolant is one of the factors that affects the quality of the workpiece. The selection of coolant is useful to lower the surface roughness of the workpiece. In addition, coolant should be easily degradable in the environment so that the environment is not polluted. Example coconut oil is an oil that can be degraded in the environment. This research is aimed to observe the influence of coconut oil for cooling to the surface roughness obtained during face milling process. In the experimental tests, conventional milling machine was used and the milling tests were performed under various machining parameters, namely spindle rotational speed was 360 and 490 rpm, feeding speed was 60 mm/min and 70mm/min. Based on the result, the surface for spindle rotational speed of 360 rpm and feeding speed 60 mm/min was more rough than one in spindle rotational speed of 360 rpm and feeding speed 70 mm/min. Besides, the surface roughness for spindle rotational speed of 490 rpm and feeding speed of 60 mm/min was also more rough than one in spindle 490 rpm and 70 mm/min.
Investigasi pengaruh jumlah elemen anoda terhadap distribusi potensial korosi pada beton bertulang menggunakan BEM 3D Iqbal Tanjung; Affandi Affandi; Syifaul Huzni; Syarizal Fonna
Rekayasa Material, Manufaktur dan Energi Vol 3, No 1: Maret 2020
Publisher : Fakultas Teknik UMSU

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (921.532 KB) | DOI: 10.30596/rmme.v3i1.4529

Abstract

Beberapa kasus kerusakan struktur beton ialah disebabkan oleh korosi. Upaya dalam pencegahan korosi dibeton bertulang ialah dengan mengaplikasikan sistem proteksi katodik anoda korban. Metode ini secara luas telah diaplikasikan dan telah berhasil dalam mencegah korosi di beton bertulang. Akan tetapi sistem ini memiliki beberapa kelemahan, diantaranya hasil dari sistem ini hanya dapat diketahui setelah sistem ini diaplikasikan. Sehingga untuk mengatasi hal ini peneliti dan ilmuan tertarik menggunakan, dan mengembangkan BEM sebagai sebuah solusi dalam rekayasa korosi. Oleh karna itu optimasi BEM merupakan hal yang sangat penting untuk meningkatkan kinerja BEM dalam menyelesaikan rekayasa korosi. Penelitian ini bertujuan untuk melakukan optimasi terhadap BEM dengan mengamati pengaruh ukuran mesh anoda terhadap distribusi potensial di baja tulangan pada simulasi sistem proteksi katodik anoda korban beton bertulang menggunakan BEM 3D. Hasil simulasi menunjukkan anoda korban aktif melakukan proteksi pada setiap variasi, anoda memiliki nilai potensial yang tidak jauh berbeda pada setiap variasi, dengan nilai potensial direntang -1124,92 mV sampai -1124,90 mV. Kemudian baja tulangan pada setiap variasi juga dalam kondisi terproteksi dengan baik dari ancaman korosi, Baja tulangan memiliki nilai potensial direntang -920,07 mV sampai -918,19 mV. Berdasarkan hasil simulasi didapat semakin banyak jumlah elemen yang digunakan dalam simulasi menghasilkan nilai selisih potensial pada baja tulangan dan beton yang semakin kecil. Akan tetapi masih dapat ditoleransi berdasarkan kriteria proteksi. Namun jumlah elemen tersebut sangat mempengaruhi waktu komputasi yang dilakukan.
Effect of Spindle Speed on the Bending Test of Al-1100 in Fraction Stir Welding Joints Bintoro, Suryanto Agung; Nasution, Arya Rudi; ., Affandi; Siregar, Rahmat Fauzi; Harahap, Jagodang
Rekayasa Material, Manufaktur dan Energi Vol 8, No 2: JULI 2025
Publisher : Fakultas Teknik UMSU

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30596/rmme.v8i2.25522

Abstract

Currently, in the industrial world, many products or components are required to have strong but light properties. Therefore, aluminum material is increasingly being chosen as the main material in the industrial production process. Aluminum and its alloys are classified as light metals that have high strength, corrosion resistance, fairly good electrical conductivity, and are lighter than iron or steel. However, aluminum has a weakness in its welding ability which is not good when compared to other metals. This problem can be overcome by the Solid-State Welding (SSW) welding method. SSW itself is a welding process carried out when the metal is still solid, meaning that the metal does not melt. One of the SSW methods that is often used is Friction Stir Welding (FSW), which is a solid-state welding technology that is very suitable for joining materials such as aluminum. FSW does not require additional materials, but instead utilizes the heat from friction between the probe and shoulder of the welding tool with the surface of the workpiece. This research on Friction Stir Welding aims to determine the effect of variations in feed rate on the strength of 1100 aluminum joints through tensile tests. The pin tool used is made of carbide, cylindrical in shape with a length of 100 mm and a diameter of 3 mm. The test specimen used was aluminum 1100 with a thickness of 3 mm, a length of 200 mm, and a width of 20 mm, and was made into 9 samples. The FSW welding process and the manufacture of test specimens were carried out according to the ASTM E8 standard. During the welding process, the pin tool rotated at 2200 Rpm, and the feedrates used were 50 mm/min, 100 mm/min, and 150 mm/min. After welding, a tensile test was carried out on the FSW joint results. There were nine tensile tests, with each feedrate parameter tested on three samples. The average tensile strength of the FSW joint on a 2200 Rpm spindle with a feedrate of 50 mm/min was 12.34 MPa, at a feedrate of 100 mm/min was 21.53 MPa, and at a feedrate of 150 mm/min was 29.21 MPa.