Claim Missing Document
Check
Articles

Implementasi Metode SAW untuk Menentukan Beasiswa Siswa Berprestasi pada Lembaga Pendidikan Pakto, Dedi; Sihombing, Volvo; Irmayani, Deci
Jurnal Sistem Informasi, Teknik Informatika dan Teknologi Pendidikan Vol. 4 No. 2 (2025): Jurnal Sistem Informasi, Teknik Informatika dan Teknologi Pendidikan
Publisher : Utiliti Project Solution

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55338/justikpen.v4i2.149

Abstract

Penentuan penerima beasiswa siswa berprestasi pada lembaga pendidikan merupakan proses yang kompleks dan memerlukan pertimbangan berbagai kriteria yang mencakup prestasi akademik, partisipasi dalam kegiatan ekstrakurikuler, kepribadian, serta kondisi sosial-ekonomi. Tanpa sistem penilaian yang terstruktur, proses seleksi sering kali bersifat subyektif dan kurang transparan. Dalam penelitian ini, metode Simple Additive Weighting (SAW) diimplementasikan sebagai solusi untuk mengatasi permasalahan tersebut. Metode SAW memungkinkan pengambilan keputusan berbasis multi-kriteria dengan memberikan bobot yang sesuai pada setiap kriteria, sehingga dapat menghasilkan peringkat yang lebih akurat dan objektif. Studi ini melibatkan pengumpulan data dari berbagai siswa yang memenuhi syarat untuk mendapatkan beasiswa, kemudian diolah menggunakan metode SAW untuk menentukan kandidat terbaik. Hasil dari penelitian menunjukkan bahwa metode SAW mampu memberikan rekomendasi yang lebih efisien, terukur, dan adil dalam proses seleksi beasiswa. Selain itu, metode ini juga memungkinkan lembaga pendidikan untuk mengidentifikasi potensi siswa secara lebih komprehensif, serta meningkatkan transparansi dan akuntabilitas dalam proses seleksi.
Optimal Biaya Pengiriman Beras Menggunakan Model Transportasi Motode North Westh Corner (NWC) Dwiyanti, Dida; Irmayani, Deci; Sihombing, Volvo
Jurnal Media Informatika Vol. 5 No. 2 (2024): Jurnal Media Informatika
Publisher : Jurnal Media Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Transportasi berkaitan dengan distribusi barang dari sentra produksi ke lokasi penjualan. Penelitian ini menggunakan metode North West Corner (NWC) untuk mengoptimalkan biaya pengiriman beras dari Distributor Beras X di Kabupaten Karawang Data pengiriman beras bulan Juli 2019 diolah dengan metode NWC untuk optimasi biaya pengiriman. Distributor memasok beras ke 3 agen dengan biaya pengiriman Rp. 1.000.000 per kali pengiriman, tergantung pada jarak Distributor beras X di Kab. Karawang memasok beras pada setiap agen dan agen tersebut mendistribusikan beras kepada pelanggannya dengan jumlah beras sesuai dengan permintaan dari masing- masing pelanggan di pasar. Pengiriman beras dari agen ke 4 titik pasar tersebut memiliki biaya transportasi yang berbeda-beda disesuaikan dengan jarak pengiriman dalam setiap kali pengiriman beras. Biaya transportasi merupakan masalah yang sering dijumpai di berbagai bidang terutama yang bergerak di bidang produksi dan pemasaran
Drone simulation for agriculture and LoRa based approach adi, Puput Dani Prasetyo; Mustamu, Novilda Elizabeth; siregar, Victor M.M.; Sihombing, Volvo
Internet of Things and Artificial Intelligence Journal Vol. 1 No. 4 (2021): Volume 1 Issue 4, 2021 [November]
Publisher : Association for Scientific Computing, Electronics, and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1480.208 KB) | DOI: 10.31763/iota.v1i4.501

Abstract

Spraying appropriately and regularly will help develop rice plants' growth and development to produce superior rice. These pesticides' spraying is sometimes uneven because of the vast land, limited human labor, and several other factors. that appropriate technology is needed that helps in the process of spraying rice pesticides using drones. Drones are deemed appropriate in spraying its advantages, among others, more effective, reducing the involvement of humans in work. Drones help track consistently and in detail the part of agricultural land that will be sprayed with pesticides, unlike humans. It is more automatic in monitoring, with the camera used on the drone can see the growth of rice plants directly and do recording or real-time connecting to the application server or IoT. Besides spraying pesticides, regular monitoring of plants can be done with drones. This study uses a UAV simulation for mapping the location of pesticide spraying, the results of contributions to large areas, and analysis of drone power consumption, which means allocating Drones to the area of land being managed.
The Relationship of Teacher Activity in the Teaching and Learning Process to Elementary Student Learning Outcomes Using Bootstrap Machine Learning Hia, Faomaha; Sihombing, Volvo; Juledi, Angga Putra
Internet of Things and Artificial Intelligence Journal Vol. 3 No. 4 (2023): Vol. 3 No. 4 (2023): Volume 3 Issue 4, 2023 [November]
Publisher : Association for Scientific Computing, Electronics, and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/iota.v3i4.669

Abstract

Often, after the learning and teaching process is over, students will be tested with quizzes, midterm exams, and even end-of-semester exams, but these exams still take time after the teacher has taught several weeks or months that have passed; what if after teaching, for example, a math lesson, and students immediately understand or do not understand at all, and this can be detected using Machine Learning. The variable that can be raised is the value or quiz grade of a particular subject; for example, mathematics is one of the disliked subjects for most elementary school students, but how to find out that the student is able or unable to solve math problems and predict the end of semester grades for mathematics, this can be determined using Machine Learning, using the KNN Algorithm or K-MEANS method, or other methods that are deemed appropriate to the existing case study. In this case study, it is predicted whether a variable affects each other or affects other variables; this is done by doing or drawing relationships between variables. This research successfully concluded from the performance of machine learning in predicting students' understanding of math lessons after teaching and learning activities ended. The parameters that will be used for testing are population and sampling, and then data analysis, validity, and reliability tests are carried out.
Penentuan Tumbuh Kembang Balita Dengan Pengimplementasian Metode Simple Multi Atribute Rating Technique (SMART) Mega, Mega; Yanris, Gomal Juni; Sihombing, Volvo
MEANS (Media Informasi Analisa dan Sistem) Volume 6 Nomor 1
Publisher : LPPM UNIKA Santo Thomas Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (443.276 KB) | DOI: 10.54367/means.v6i1.1249

Abstract

Status gizi balita merupakan faktor penting dalam upaya menurunkan angka kematian anak. Perkembangan gizi masyarakat dapat dipantau melalui hasil pencatatan dan pelaporan program perbaikan gizi masyarakat yang tercermin dari hasil penimbangan bayi dan balita setiap bulan di Pos Pelayanan Terpadu (Posyandu), dimana upaya tersebut bertujuan untuk menjaga dan meningkatkan kesehatan serta mencegah dan menanggulangi timbulnya masalah kesehatan masyarakat khususnya yang ditujukan pada balita. Namun dalam melaksanakan kegiatan pelayanan kesehatan Tenaga Medis, dihadapkan pada permasalahan penting yaitu masih sulitnya dalam memberikan informasi terkait hasil pemantauan tumbuh kembang balita, karena informasi tumbuh kembang bayi yang dimiliki diperoleh dari pendataan yang dilakukan secara manual seperti; membuat catatan dan perhitungan untuk mengetahui kondisi balita yang dinyatakan baik, kurang, atau buruk. Penerapan metode SMART pada tumbuh kembang Balita, metode ini dapat digunakan berdasarkan bobot dan kriteria yang telah ditentukan. Kriteria yang digunakan didasarkan pada kriteria penilaian indeks Antropometri. Hasil analisis tersebut merupakan hasil pemeringkatan nilai terbesar untuk dijadikan bahan dalam proses pengambilan keputusan. metode ini dapat digunakan berdasarkan bobot dan kriteria yang telah ditentukan. Kriteria yang digunakan didasarkan pada kriteria penilaian indeks Antropometri. Hasil analisis tersebut merupakan hasil pemeringkatan nilai terbesar untuk dijadikan bahan dalam proses pengambilan keputusan. metode ini dapat digunakan berdasarkan bobot dan kriteria yang telah ditentukan. Kriteria yang digunakan didasarkan pada kriteria penilaian indeks Antropometri. Hasil analisis tersebut merupakan hasil pemeringkatan nilai terbesar untuk dijadikan bahan dalam proses pengambilan keputusan.
Analisa Metode El Chinix Traduisant La Realite (Electre) dan Weighted Product (WP) Untuk Pendukung Keputusan Perekrutan Karyawan Sitorus, Anggiat Selamat; Sihombing, Volvo; Munthe, Ibnu Rasyid
MEANS (Media Informasi Analisa dan Sistem) Volume 6 Nomor 1
Publisher : LPPM UNIKA Santo Thomas Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (521.994 KB) | DOI: 10.54367/means.v6i1.1250

Abstract

Human resource management (HR) is important to achieve company goals. One of the activities in HR management is recruitment, selection, and training. Recruitment and selection are usually carried out without using a system so that the calculations are still done manually. However, by processing data using the system, it can produce a decision in recommending prospective employees who can have a positive impact on the company. The company selection process is carried out in two stages, namely official selection and final selection in the form of psychological tests, interviews, ability tests, and communication. The use of the Elimination Et Choix Traduisant La Realite (ELECTRE) method at the official selection stage and the Weighted Product (WP) method at the final selection stage is a discovery made to obtain the best decision according to the required criteria. By using this method, the final result will be obtained, namely recommendations from several prospective employees who are fit to work in the company. The results of this system performance reached one hundred percent; the data from the system is in accordance with the expected calculations.
ImplementasiAlgoritma Naïve Bayes Classifier (NBC) Untuk Analisis Sentimen Komentar Kebijakan Full Day School Dewi Utami, Yarma Agustya; Sihombing, Volvo; Dar, Muhammad Halmi
MEANS (Media Informasi Analisa dan Sistem) Volume 6 Nomor 1
Publisher : LPPM UNIKA Santo Thomas Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (497.026 KB) | DOI: 10.54367/means.v6i1.1251

Abstract

Sentiment analysis is an important research topic and is currently being developed. Sentiment analysis is carried out to see the opinion or tendency of a person's opinion on a problem or object, whether it tends to have a negative or positive view. The main purpose of this research is to find out public sentiment towards the Full Day school policy comments from the Facebook Page of the Ministry of Education and Culture of the Republic of Indonesia and to determine the performance of the Na-ïve Bayes Classifier Algorithm. The results of this study indicate that the public's negative sentiment towards the Full Day School policy is higher than positive or neutral sentiment. The highest accuracy value is the Naïve Bayes Classifier algorithm with the trigram feature selection of the 300 data training model with a value of 80%. This simulation has proven that the larger the training data and the selection of features used in the NBC Algorithm affect the accuracy of the results. Meanwhile, the simulation results from 10 test data with 5 different NBC and Lexicon algorithms also show that the Full Day School Policy proposed by the Indonesian Minister of Education and Culture has a higher negative sentiment than positive or neutral by most Facebook users who express opinions through comments. The highest accuracy value is the Naïve Bayes Classifier algorithm with the trigram feature selection of the 300 data training model with a value of 80%. This simulation has proven that the larger the training data and the selection of features used in the NBC Algorithm affect the accuracy of the results. Meanwhile, the simulation results from 10 test data with 5 different NBC and Lexicon algorithms also show that the Full Day School Policy proposed by the Indonesian Minister of Education and Culture has a higher negative sentiment than positive or neutral by most users. Facebook that expresses opinions through comments. The highest accuracy value is the Naïve Bayes Classifier algorithm with the tri-gram feature selection of the 300 data training model with a value of 80%. This simulation has proven that the larger the training data and the selection of features used in the NBC Algorithm affect the accuracy results.
ANALISA OPTIMASI DISTRIBUSI BARANG BANGUNAN MENGGUNAKAN METODE LEAST COST PADA UD . RAMA JAYA PERDAGANGAN Gultom, Gregorius Apri K; Sihombing, Volvo; Irmayani, Deci
MEANS (Media Informasi Analisa dan Sistem) Volume 6 Nomor 1
Publisher : LPPM UNIKA Santo Thomas Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (529.153 KB) | DOI: 10.54367/means.v6i1.1252

Abstract

Masalah transportasi adalah masalah pemrograman linier pada umumnya berhubungan dengan distribusi suatu produk dari beberapa sumber, dengan penawaran terbatas menuju beberapa tujuan dengan biaya tertentu pada biaya transportasi minimum. Tujuan dari model transportasi adalah merencanakan pengiriman suatu dari sumber tujuan sedemikian rupa untuk meminimalkan biaya transportasi. Beberapa teknik perhitungan sebagai bahan pertimbangan yang baik dalam membuat suatu kebijakan agar biaya pendistribusian minimal dapat tercapai oleh suatu usaha panglong, dalam hal ini untuk menentukan solusi awal yang layak digunakan metode  Least Cost ( biaya minimum).
Implementasi Metode Transportasi North West Corner Untuk Optimasi Biaya Pengiriman Barang Pada UD. Naga Timbul Hendriyanti, Yurika Cici; Masrizal, Masrizal; Sihombing, Volvo
MEANS (Media Informasi Analisa dan Sistem) Volume 8 Nomor 1
Publisher : LPPM UNIKA Santo Thomas Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54367/means.v8i1.2568

Abstract

Delivery of goods or services is an important part of the activities of a government agency or a particular company. The problem that is often faced with shipping is the issue of cost. The delivery system is a series of activities that determine the company where the products are sent to consumers to be marketed with the aim of facilitating product marketing. The delivery system is one of the main supports after the production process thus realizing the optimization of shipping costs. UD. Naga Timbul is a company engaged in the fertilizer sector. Goods produced will be sent to the branch company UD. Naga Timbul. The method in this study is to use the North West Corner (NWC) method to calculate the cost of shipping goods. The application consists of three parts, namely, filling in the data supply and location of demand, as well as filling in data on the cost of shipping goods. To build this system application design, Microsoft Visual Basic 2008 and Mysql software are needed as database creation.
Penerapan Data Mining Klasifikasi Kepuasan Pelanggan Transportasi Online Menggunakan Algoritma C4.5 Jannah , Ely; Sihombing, Volvo; Masrizal, Masrizal
MEANS (Media Informasi Analisa dan Sistem) Volume 8 Nomor 1
Publisher : LPPM UNIKA Santo Thomas Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54367/means.v8i1.2569

Abstract

Klasifikasi kepuasan pelanggan pengguna transportasi online merupakan suatu sikap positif atau respon pelanggan terhadap pelayanan penggunaan transportasi online. Pengklasifikasin kepuasan pengguna transportasi online ini dilakukan dengan tujuan untuk meningkatkan kualitas perusahaan khususnya di bidang pelayanan pengguna transportasi roda dua. Dalam penelitian ini, tingkat kepuasan pelanggan diklasifikasian dalam empat atribut yaitu harga, fasilitas, pelayanan, dan loyalitas sehingga dari ke empat atribut tersebut dapat diperoleh hasil pengklasifikasian tingkat kepuasan pelanggan dalam kategori puas dan tidak puas. Dengan menerapkan berbagai persamaan dan langkah-langkah mengenai perhitungan algoritma C4.5, yaitu dengan menghitung entropy, split info, gain dan nilai gain ratio dengan atribut Fasilitas, Pelayanan, Loyalitas, Kategori. Himpunan Atribut yaitu Sangat Puas, Puas, Cukup Puas, Tidak Puas, Sangat Tidak Puas. Input data sebanyak 155 data. Dari data tersebut maka dibagi 2 yaitu 100 data data latih (training) dan 55 data data uji (testing). klasifikasi kepuasan pelanggan “Tidak Puas” sebanyak 91 orang pelanggan, sedangkan yang “Tidak Puas” sebanyak 9 orang pelanggan.