Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : Malcom: Indonesian Journal of Machine Learning and Computer Science

Prediksi Penyakit Diabetes Melitus Tipe 2 Menggunakan Algoritma K-Nearest Neighbor (K-NN) : Prediction of Type 2 Diabetes Mellitus Using The K-Nearest Neighbor (K-NN) Algorithm Oktaviana, Agfa; Wijaya, Dhina Puspasari; Pramuntadi, Andri; Heksaputra, Dadang
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 4 No. 3 (2024): MALCOM July 2024
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v4i3.1268

Abstract

Diabetes Melitus (DM) merupakan salah satu Penyakit Tidak Menular (PTM) yang dikenal dengan tingginya kadar gula dalam darah. International Diabetes Federation (IDF) memprediksi di tahun 2045, penyakit DM akan mengalami peningkatan menjadi 629 juta penduduk. Pada era modern saat ini, pola gaya hidup menjadi hal yang harus diperhatikan karena beriringan dengan berkembangnya teknologi menjadi mudah dan cepat. Pola gaya hidup yang buruk terus-menerus dapat berpotensi untuk terkena penyakit DM Tipe 2. Berbagai upaya dilakukan untuk menekan angka pertumbuhan penyakit ini salah satunya melakukan penelitian untuk membuat predisi terhadap seseorang menggunakan berbagai metode seperti metode klasifikasi K-NN. Tujuan dari penelitian ini adalah mengimplementasikan dan membangun sebuah permodelan. Dataset yang digunakan berasal dari Puskesmas Mlati II Kecamatan Mlati, Kabupaten Sleman, Provinsi Daerah Istimewa Yogyakarta. Dalam membangun sebuah model prediksi, dataset dipreprocessing menggunakan MinMax Normalization, pembagian train set dan test set menggunakan Stratified 5-fold CV. Adapun parameter yang digunakan dari K-NN adalah manhattan distance dan nilai n_neighbors = 13. Dengan menggunakan evaluasi akurasi, presisi, recall, dan f1-score, masing-masing memberikan hasil yaitu 88%, 83%, 87%, dan 85%.
Implementasi Metode Deep Neural Network pada Klasifikasi Penyakit Diabetes Melitus Tipe 2: Implementation of Deep Neural Network Method on Classification of Type 2 Diabetes Mellitus Disease Rizky, Muhammad; Pramuntadi, Andri; Prastowo, Wahit Desta; Gutama, Deden Hardan
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 4 No. 3 (2024): MALCOM July 2024
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v4i3.1279

Abstract

Penyakit diabetes mellitus ditandai oleh tingginya kadar gula dalam darah, juga dikenal sebagai glukosa, sebagai akibat dari kurangnya atau ketidakmampuan tubuh untuk menggunakan insulin secara efisien. Pada tahun 2021, Federasi Diabetes Internasional (IDF) melaporkan bahwa lima negara memiliki jumlah penderita diabetes mellitus terbanyak di kelompok usia 20 hingga 79 tahun. Dengan 19,5 juta orang yang menderita, Indonesia menempati peringkat kedua. Berbagai upaya telah dilakukan untuk menghentikan perkembangan penyakit ini. Salah satunya adalah penelitian yang menggunakan metode klasifikasi Deep Neural Network (DNN) untuk memprediksi risiko seseorang. Menggunakan dataset dari Puskesmas Mergangsan di Kota Yogyakarta, Provinsi DIY, penelitian ini menggunakan sepuluh variabel: jenis kelamin, merokok, berat badan, tinggi badan, Indeks Massa Tubuh (IMT), hipertensi, usia, aktivitas fisik, konsumsi alkohol, dan riwayat penyakit tidak menular. Parameter DNN seperti jumlah lapisan, jumlah neuron, fungsi aktivasi, tingkat pembelajaran, ukuran batch, berat, optimizer, fungsi kehilangan, epoch, dan bias digunakan untuk membangun model prediksi. Metode K 10-fold CV digunakan untuk mempartisi data pelatihan dan uji untuk membuat model prediksi. Hasilnya mencapai 90 persen, 85 persen, 95 persen, dan 89 persen masing-masing dengan menggunakan skor f1, akurasi, presisi, dan recall.
Implementasi Metode Decision Tree pada Prediksi Penyakit Diabetes Melitus Tipe 2: Implementation of Decision Tree Method for Diabetes Mellitus Type 2 Prediction Aditya, Muhammad Fahrul; Pramuntadi, Andri; Wijaya, Dhina Puspasari; Wicaksono, Yanuar
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 4 No. 3 (2024): MALCOM July 2024
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v4i3.1284

Abstract

Diabetes Melitus Tipe 2 merupakan penyakit kronis yang apabila pankreas tidak memproduksi cukup insulin atau ketika tubuh tidak mampu menggunakan insulin yang diproduksi secara efektif. Berbagai cara telah di upayakan untuk mengurangi penderita diabetes salah satunya adalah dengan deteksi dini. Kemajuan teknologi yang sangat pesat berdampak pada dunia medis, salah satunya adalah untuk deteksi dini suatu penyakit. Proses deteksi suatu penyakit menggunakan alat yang telah diprogram dan di intervensi oleh kecerdasan buatan.Terdapat banyak metode dari kecerdasan buatan yang digunakan sebagai model prediksi, salah satunya adalah Decision Tree (DT). Penelitian ini bertujuan untuk mengimplementasikan dan membangun sebuah model prediksi penyakit Diabetes. Dataset yang digunakan adalah dataset yang berasal dari Puskesmas Mlati II Kabupaten Sleman. Model dalam penelitian ini meggunakan metode Decision Tree (Pohon Keputusan), adapun parameter yang digunakan adalah criterion = ‘entropy’, splitter = ‘best’, max_depth = None, min_samples_split = 4, min_samples_leaf = 10. Proses evaluasi model menggunakan akurasi, presisi, recall, dan f1-score yang masing-masing menghasilka nilai 92%, 0.92, 0.915, 0.915.
Sistem Pakar Diagnosa Penyakit Lambung Menggunakan Metode Certainty Factor Berbasis Web: Expert System for Diagnosis of Gastric Diseases Using Web-Based Employment Factors Method Febriani, Hilda Amalia; Wijaya, Dhina Puspasari; Pramuntadi, Andri; Prastowo, Wahit Desta
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 4 No. 4 (2024): MALCOM October 2024
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v4i4.1402

Abstract

Penyakit lambung adalah penyakit yang tidak bisa di anggap remeh, karena karena dapat mengiritasi lapisan esofagus serta membuat lambung menjadi meradang. jika tidak segera ditangani maka bisa berakibat fatal. Kurangnya informasi masyarakat tentang penyakit lambung maka semakin banyak masyarakat yang terkena penyakit lambung, penyebab utama dari penyakit lambung yaitu berasal dari virus dan bakteri helicobacter pylori. Dengan dibuatnya sistem pakar berbasis web menggunakan metode certainty factor ini dapat digunakan sebagai penanganan awal untuk mempermudah user dalam melakukan konsultasi berdasarkan dari gejala-gejala yang ditimbulkan. Penggunaan metode certainty factor pada sistem pakar ini karena hasil dari penerapan metode certainty factor yaitu presentase. Nilai presentase pada sistem pakar diagnosa penyakit lambung ini di ambil dari hasil akhir tertinggi. Berdasarkan dari uji akurasi yang telah dilakukan, mendapatkan hasil tingkat akurasi sebesar 100%. Dengan akurasi yang tinggi maka sistem pakar diagnosa penyakit lambung menggunakan metode certainty factor dapat disimpulkan bahwa sistem pakar ini mempunyai performa yang baik.