Claim Missing Document
Check
Articles

Perancangan Sistem Klasifikasi Glaukoma Menggunakan Metode Convolutional Neural Network Muhammad Yuqdha Faza; Rita Magdalena; R Yunendah Nur Fuadah
eProceedings of Engineering Vol 8, No 5 (2021): Oktober 2021
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Penyakit glaukoma merupakan penyakit yang menyebabkan kebutaan terbanyak di dunia. Glaukoma disebabkan karena siklus memproduksi dan mengeluarkan cairan bola mata atau disebut dengan aquos humor tidak seimbang yang mengakibatkan terjadinya penekanan pada bola mata. Pengklasifikasian penyakit glaukoma secara otomatis dibutuhkan karena banyak kasus penyakit glaukoma terdeteksi saat keadaannya sudah parah. Penelitian ini merancang suatu sistem klasifikasi penyakit glaukoma menggunakan metode Convolutional Neural Network (CNN) dengan menggunakan arsitektur GoogLeNet. Klasifikasi pada sistem ini menggunakan data sebanyak 1000 data citra fundus digital. Perancangan sistem ini dapat mengklasifikasikan penyakit glaukoma menjadi lima kelas, yaitu deep, early, moderate, normal, dan hipertensi okular (OHT). Sistem ini bertujuan untuk mempermudah dalam pengklasifikasian penyakit glaukoma. Terdapat beberapa parameter yang mempengaruhi performa sistem, oleh karena itu, dilakukan beberapa skenario dalam penelitian ini agar mendapatkan parameter dengan hasil performa sistem terbaik. Hasil dari pengujian sistem memberikan akurasi sebesar 95.40%, presisi sebesar 95%, recall sebesar 94%, f1-score sebesar 94%, dan nilai loss 1.9163. Kata kunci : Glaukoma, Convolutional Neural Network (CNN),
Klasifikasi Penyakit Paru-paru Berbasis Pengolahan Citra X Ray Menggunakan Convolutional Neural Network (classification Of The Lung Diseases Based On X Ray Image Processing Using Convolutional Neural Network) Razief Moch Diar; R. Yunendah Nur Fu’Adah; Koredianto Usman
eProceedings of Engineering Vol 9, No 2 (2022): April 2022
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

k Penyakit pada paru-paru merupakan gangguan yang cukup serius dimana dapat menyerang sistem pernapasan manusia dan bisa berakibat fatal jika tidak ditangani dengan serius. Pada saat ini deteksi penyakit pada paru-paru masih dilakukan secara manual oleh para dokter ahli, namun proses secara manual memakan waktu lama. Oleh karena itu, dalam tugas akhir ini dibuat sistem yang dapat mendeteksi dan mengklasifikasi penyakit paru-paru dengan otomatis.Pada Tugas Akhir ini merancang sistem otomatis untuk mengklasifikasi kondisi paru-paru berdasarkan citra x-ray paru-paru berbasis Convolutional Neural Network (CNN) menggunakan arsitektur MobileNet. Perancangan pada sistem dibagi menjadi beberapa tahapan dimulai dari menginput data citra x-ray paru-paru, tahap selanjutnya preprocessing, pada penelitian ini menggunakan dua jenis preprocessing, yaitu CLAHE, dan Gaussian filter, lalu dari hasil preprocessing dilakukan tahap pelatihan dengan dua jenis optimizer yang berbeda, yaitu Stochastic Gradient Descent (SGD), dan Adaptive moment (Adam). Tahap terakhir mengkalisifikasikan data citra menjadi empat kelas, yaitu Viral Pneumonia, Coronavirus Disease-19 (Covid-19), Normal dan Tuberculosis. Hasil akhir dari penelitian ini menunjukan optimizer terbaik yaitu Adam menggunakan preprocessing CLAHE pada epoch 50 dan menghasilkan nilai akurasi sebesar 94,687 dan loss sebesar 0,148. Selain itu juga diperoleh hasil dari performansi sistem berupa presisi 95%, recall 93%, dan F-1 score sebesar 94%. Kata Kunci : CNN, MobileNet, citra x-ray paru-paru, Viral Pneumonia, Coronavirus Disease-19 (Covid-19), Normal, Tuberculosis. Abstract Diseases of the lungs are quite serious disorders which can attack the human respiratory system and can be fatal if not treated seriously. At this time the detection of disease in the lungs is still check manually by expert doctors, but manual process takes a long time. Therefore, in this final project, a system is made that can detect and classify lung diseases automatically. using MobileNet architecture. The design of the system is divided into several stages starting from inputting lung x-ray image data, the next stage is preprocessing, in this study using two types of preprocessing, namely CLAHE, and Gaussian filters, then from the results of preprocessing, the training phase is carried out with two types of optimizers that different, namely Stochastic Gradient Descent (SGD), and Adaptive moment (Adam). The last stage is to classify image data into four classes, namely Viral Pneumonia, Coronavirus Disease-19 (Covid-19), Normal and Tuberculosis. The final result of this study shows that the best optimizer is Adam using CLAHE preprocessing on epoch 50 and produces an accuracy value of 94,687 and a loss of 0.148. In addition, the results of the system performance are 95% precision, 93% recall, and an F-1 score of 94%. Keywords: CNN, MobileNet, lung x-ray images, Viral Pneumonia, Coronavirus Disease-19 (Covid-19), Normal, Tuberculosis
Skin Cancer Classification Malignant and Benign Using Convolutional Neural Network Nur Alyyu; Ratna Sari; R.Yunendah Nur Fuadah; Nor Kumalasari Caecar Pratiwi; Sofia Saidah
JMECS (Journal of Measurements, Electronics, Communications, and Systems) Vol 9 No 2 (2022): JMECS
Publisher : Universitas Telkom

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25124/jmecs.v9i2.5724

Abstract

Skin cancer is one of the most deadly cancers. This cancer ranks third after cervical cancer and breast cancer in Indonesia. In detecting skin cancer, a dermatologist can carry out a biopsy. However, carrying out a biopsy requires a long time and preparation. Innovations to classify and detect skin cancer using artificial neural networks are overgrowing in helping doctors so that prompt and appropriate treatment can be carried out. The purpose of this project was to develop a system to classifying skin cancer using Convolutional Neural Networks (CNNs) and the ResNet50 architecture. This research examined the extent of system performance results using accuracy, recall, precision, and f1-score by doing several trials by changing the hyperparameters. The dataset used in this study was obtained online through Kaggle, with two classes, malignant and benign, divided into 80% training data and 20% test data. Based on the testing result, the best hyperparameter system was obtained using AdaMax optimizer, the learning rate was 0.0001, the batch size was 64, and the epoch was 50. In this research, The performance results values were 99% for precission, recall and f1-score. Simulation results show that this method with highly optimized hyperparameters can accurately classify malignant and benign skin cancer.
Early Detection of Deforestation through Satellite Land Geospatial Images based on CNN Architecture Nor Kumalasari Caecar Pratiwi; Yunendah Nur Fu'adah; Edwar Edwar
JURNAL INFOTEL Vol 13 No 2 (2021): May 2021
Publisher : LPPM INSTITUT TEKNOLOGI TELKOM PURWOKERTO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/infotel.v13i2.642

Abstract

This study has developed a CNN model applied to classify the eight classes of land cover through satellite images. Early detection of deforestation has become one of the study’s objectives. Deforestation is the process of reducing natural forests for logging or converting forest land to non-forest land. The study considered two training models, a simple four hidden layer CNN compare with Alexnet architecture. The training variables such as input size, epoch, batch size, and learning rate were also investigated in this research. The Alexnet architecture produces validation accuracy over 100 epochs of 90.23% with a loss of 0.56. The best performance of the validation process with four hidden layers CNN got 95.2% accuracy and a loss of 0.17. This performance is achieved when the four hidden layer model is designed with an input size of 64 × 64, epoch 100, batch size 32, and learning rate of 0.001. It is expected that this land cover identification system can assist relevant authorities in the early detection of deforestation.
Deteksi Penyakit pada Tanaman Padi Menggunakan Pengolahan Citra Digital dengan Metode Convolutional Neural Network Santosa, Atharizky Ade; Fu'adah, R Yunendah Nur; Rizal, Syamsul
JOURNAL OF ELECTRICAL AND SYSTEM CONTROL ENGINEERING Vol. 6 No. 2 (2023): Journal of Electrical and System Control Engineering
Publisher : Universitas Medan Area

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31289/jesce.v6i2.7930

Abstract

Rice plant is one of the important factors in supporting human life. When it starts to grow, of course, rice plants also often face problems such as pests or diseases that cause plants to die and lead to crop failure. So proper handling is needed to overcome the disease in rice plants. One of the treatments that can be done is by detecting diseases in rice plants, so that farmers can provide appropriate treatment for these problems. The research data will be processed through several stages, then the dataset used in this study consists of three classes of rice plant diseases, namely, bacterial leaf blight, brown spot, leaf smut and one class of healthy/healthy rice plants with a total of 16000 datasets collected from sources www.kaggle.net and previous research. The parameters tested in this study, namely hidden layer and optimizer affect system performance in the form of accuracy, precision, recall, fl-score, and loss values. In this study, the best results were obtained by using four hidden layers and Adam optimizer. Accuracy was 99.66%, precision, recall, fl-score was 99.66%. 100% and a loss of 0.0047 as well as a graph of the accuracy and loss performance in a good fit.
Optimasi Convolutional Neural Network dan K-Fold Cross Validation pada Sistem Klasifikasi Glaukoma FUADAH, YUNENDAH NUR; UBAIDULLAH, IBNU DAWAN; IBRAHIM, NUR; TALININGSING, FAUZI FRAHMA; SY, NIDAAN KHOFIYA; PRAMUDITHO, MUHAMMAD ADNAN
ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika Vol 10, No 3: Published July 2022
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/elkomika.v10i3.728

Abstract

ABSTRAKPada penelitian ini dilakukan perancangan arsitektur Convolutional Neural Network (CNN) yang terdiri dari 5 layer konvolusi dan 1-fully connected layer untuk mengklasifikasikan citra fundus kedalam kondisi normal, early, moderate, deep, dan ocular hypertension (OHT). Selanjutnya, model yang diusulkan dibandingkan dengan arsitektur AlexNet yang memiliki 5 layer konvolusi dan 3- fully connected layer. Data yang digunakan berupa citra fundus yang terdiri dari 3200 data latih, 800 data validasi, dan 1000 data uji. Optimasi model CNN dilakukan dengan melakukan pengujian hyperparameter yang terdiri dari learning rate, batch-size, epoch, dan optimizer. Selain itu, pada tahap training diimplementasikan 5-fold cross validation untuk seleksi model terbaik. Dengan model yang lebih sederhana dari AlexNet, model CNN usulan dapat memberikan performansi yang sama dengan arsitektur AlexNet yaitu akurasi 100%, presisi, recall, f1-score dan AUC score bernilai 1.Kata kunci: glaukoma, citra fundus, convolutional neural network (CNN), AlexNet ABSTRACTThis study proposes a Convolutional Neural Network with 5 convolutional layer and 1-fully connected layer to classify fundus images into normal, early, moderate, deep, and ocular hypertension (OHT) conditions. Furthermore, the proposed model is compared with the AlexNet architecture which has 5 convolution layers and 3- fully connected layers. The data used is a fundus image consisting of 3200 training data, 800 validation data, and 1000 test data. The optimization of the CNN model is performed by testing the hyperparameters consisting of learning rate, batch size, epoch, and optimizer. In addition, at the training stage, 5-fold cross validation is implemented to select the best model to be used in the test stage. With a simpler model from AlexNet, the proposed model provides 100% accuracy performance with precision values, recall, f1-score, and AUC score of 1.Keywords: glaucoma, fundus images, convolutional neural network (CNN), AlexNet
Deteksi Parasit Plasmodium pada Citra Mikroskopis Hapusan Darah dengan Metode Deep Learning PRATIWI, NOR KUMALASARI CAECAR; IBRAHIM, NUR; FU’ADAH, YUNENDAH NUR; RIZAL, SYAMSUL
ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika Vol 9, No 2: Published April 2021
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/elkomika.v9i2.306

Abstract

ABSTRAKParasit plasmodium merupakan makhluk protozoa bersel satu yang menjadi penyebab penyakit malaria. Plasmodium ini dibawa melalui gigitan nyamuk anopheles betina. Dalam World Malaria Report 2015 menyatakan bahwa malaria telah menyerang sedikit 106 negara di dunia. Di Indonesia sendiri, Papua, NTT dan Maluku merupakan wilayah dengan kasus positif malaria tertinggi. Malaria telah menjadi masalah yang serius, sehingga keberadaan sistem diagnosa otomatis yang cepat dan handal sangat diperlukan untuk proses perlambatan penyeberan dan pembasmian epidemi. Dalam penelitian ini akan dirancang sistem yang mampu mendeteksi parasit malaria pada citra mikroskopis darah menggunakan arsitekur Convolutional Neural Network (CNN) sederhana. Hasil pengujian menunjukkan bahwa metode yang diusulkan memberikan presisi dan recall sebesar 0,98 dan f1-score sebesar 0,96 serta akurasi 95,83%.Kata kunci: parasit, malaria, convolutional neural network, citra mikroskopis ABSTRACTPlasmodium parasites are single-celled protozoan creatures that cause malaria. Plasmodium is carried through the bite of a female Anopheles mosquito. The World Malaria Report 2015 states that malaria has attacked at least 106 countries in the world. In Indonesia itself, Papua, NTT and Maluku are the regions with the highest positive cases of malaria. Malaria has become a serious problem, so the existence of a fast and reliable automatic diagnosis system is indispensable for the process of slowing down the spread and eliminating the epidemic. In this study, a system capable of detecting malaria parasites in microscopic images of blood will be designed using a simple Convolutional Neural Network (CNN) architecture. The test results show that the proposed method provides precision and recall of 0,98, f1-values of 0.96 and accuracy of 95,83%.Keywords: parasites, malaria, convolutional neural network, microscopic image
Deep Learning untuk Klasifikasi Diabetic Retinopathy menggunakan Model EfficientNet RIZAL, SYAMSUL; IBRAHIM, NUR; PRATIWI, NOR KUMALASARI CAESAR; SAIDAH, SOFIA; FU’ADAH, RADEN YUNENDAH NUR
ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika Vol 8, No 3: Published September 2020
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/elkomika.v8i3.693

Abstract

ABSTRAKDiabetic Retinopathy merupakan penyakit yang dapat mengakibatkan kebutaan mata yang disebabkan oleh adanya komplikasi penyakit diabetes melitus. Oleh karena itu mendeteksi secara dini sangat diperlukan untuk mencegah bertambah parahnya penyakit tersebut. Penelitian ini merancang sebuah sistem yang dapat mendeteksi Diabetic Retinopathy berbasis Deep Learning dengan menggunakan Convolutional Neural Network (CNN). EfficientNet model digunakan untuk melatih dataset yang telah di pre-prosesing sebelumnya. Hasil dari penelitian tersebut didapatkan akurasi sebesar 79.8% yang dapat mengklasifikasi 5 level penyakit Diabetic Retinopathy.Kata kunci: Diabetic Retinopathy, Deep Learning, CNN, EfficientNet, Diabetic Classification ABSTRACTDiabetic Retinopathy is a diseases which can cause blindness in the eyes because of the complications of diabetes mellitus. Therefore, an early detection for this diseases is very important to prevent the diseases become severe. This research builds the system which can detect the Diabetic Retinopathy based on Deep Learning by using Convolutional Neural Network (CNN). EfficientNet model is used to trained the dataset which have been pre-prossed. The result shows that the system can clasiffy the 5 level of Diabetic Retinopathy with accuracy 79.8%. Keywords: Diabetic Retinopathy, Deep Learning, CNN, EfficientNet, Diabetic Classification
Pengawasan Digital: Sosialisasi untuk Wali Murid dan Guru dalam Mengawal Penggunaan Internet yang Aman bagi Anak di Sekolah Dasar Negeri Cihanjaro, Kecamatan Pangalengan, Kabupaten Bandung, Provinsi Jawa Barat Fu'adah, Yunendah Nur; Mulyantini, Agustien; Ramadhan, Ardiansyah; Zuhri, Hamdan Syaifuddin; Daulay, Muhammad Agil Syaifullah; Firdaus, Muhammad Naufal; Nivadirrokhman, Dhanendra; Putra, Rafly Fasha Purnomo
Jurnal Abdi Masyarakat Indonesia Vol 5 No 5 (2025): JAMSI - September 2025
Publisher : CV Firmos

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54082/jamsi.2077

Abstract

Literasi digital menjadi isu krusial di era digital, khususnya bagi masyarakat dengan akses terbatas terhadap edukasi teknolog. Selain itu, keterbatasan dalam mengakses informasi yang kredibel dan kurang memahami risiko yang ada dalam dunia digital. Sekolah Dasar Negeri (SDN) Cihanjaro yang terletak di Kampung Cihanjaro, Desa Sukamaju, Kabupaten Bandung, pada koordinat 7,109° LS dan 107,541° BT, merupakan wilayah dengan tingkat literasi digital yang rendah, khususnya di kalangan wali murid dan guru. Kegiatan pengabdian ini bertujuan untuk meningkatkan pemahaman mereka dalam mengawasi penggunaan internet yang aman bagi anak-anak. Metode yang digunakan meliputi identifikasi kebutuhan melalui survei, seminar literasi digital, serta workshop interaktif yang dilengkapi simulasi dan pendampingan penggunaan teknologi edukatif. Hasil kegiatan menunjukkan bahwa 92,31% peserta menilai materi sesuai kebutuhan, dan 97,44% merasa puas terhadap pelayanan panitia. Sebagai luaran, dikembangkan website publikasi, dan video dokumentasi, yang dapat diakses secara berkelanjutan. Kegiatan ini terbukti berhasil meningkatkan pemahaman peserta terhadap literasi digital serta memperkuat peran mereka dalam membimbing anak-anak di ranah digital.
Co-Authors Achmad Rizal Adam Agus Kurniawan Adinda Maulida Agung Aditama Putra Ahmad Fauzan Fauzan Ahmad Zendhaf Allisha Septariani Ahmad Alva Rischa Qhisthana Pratika Ardhi Fibrianto Avon Budiono Azis Ansori Wahid Daulay, Muhammad Agil Syaifullah Dian Ayu Nurlitasari Dyah Retno Mutia Edwar Efri Suhartono FAUZI FRAHMA TALININGSIH Febriani Ruming Sari Firdaus, Muhammad Naufal Firos Fathul Alam Gelar Budiman Hurianti Vidya Hurianti Vidyaningtyas Ibnu Da'wan Salim Ibnu Da’wan Salim Ubaidah Ihsan Budi Purwono Ilma Rahma Dewi Imanuel Boyke Nainggolan Inung Wijayanto Irdin Arjulian Irham Bani Alfafa Jangkung Raharjo Koredianto Usman Ledya Novamizanti Lugina Perceka Putri M Teguh Kurniawan Maghfira Rifki Hariadi Miftahul Fawaz Muhamad Reinaldi Kurniawan Muhamad Rokhmat Isnaini MUHAMMAD ADNAN PRAMUDITO Muhammad Akhyar Ghifari Muhammad Ardhi Prakasa Muhammad Dwi Cahyo Muhammad Yuqdha Faza Mulyantini, Agustien N Kumalasari Caecar Pratiwi Nabila Herman Naufal Adi Gifran Nidaan Khofiya Nivadirrokhman, Dhanendra Nor Kumalasari Nor Kumalasari Caecar Pratiwi Nur Alyyu Nur Ibrahim Ocky Tiaramukti Pandu Jati Utomo PRAMUDITHO, MUHAMMAD ADNAN PRATIWI, NOR KUMALASARI CAESAR Putra, Rafly Fasha Purnomo Raditiana Patmasari Rafid Fakhri Rahmad Hidayatullah Salam Rahmiati Aulia Ramadhan, Ardiansyah Ratna Sari Ratri Dwi Atmaja Razief Moch Diar Rd. Rohmat Saedudin Rezki Ariz Rahadian Rifky Abdul Khafid Rifqi Muhammad Fikri Rita Magdalena Rita Purnamasari Rizki Muhammad Iqbal Rizky Gilang Gumilar Saiful Azis Santosa, Atharizky Ade Sari, Febriani Ruming Siti Hajar Komariah SOFIA SAIDAH Sony Sumaryo Steven Palondongan Sugondo Hadiyoso SY, NIDAAN KHOFIYA Syafiq Hilmi Abdullah Syamsul Rizal Syamsul Rizal TALININGSING, FAUZI FRAHMA Teguh Dian Arifandi Teguh Musaharpa Gunawan UBAIDULLAH, IBNU DAWAN Vidya, Hurianti Wawan Tripiawan Yoga Yuniadi Zuhri, Hamdan Syaifuddin