Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Automotive Experiences

Addressing Fire Safety, Ground Impact Resistance, and Thermal Management in Composite EV Battery Enclosures: A Review Kaleg, Sunarto; Sumarsono, Danardono Agus; Whulanza, Yudan; Budiman, Alexander Christantho
Automotive Experiences Vol 7 No 3 (2024)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.12540

Abstract

Lithium-ion batteries are fundamental to modern electric vehicles, offering high energy density, long cycle life, and low self-discharge rates. However, thermal runaway—a critical safety issue involving uncontrolled temperature increases—can lead to fire or explosion. Ensuring flame retardancy is crucial in accidents where battery packs are exposed to external fires. Additionally, battery packs are susceptible to mechanical stresses and potential damage from ground impacts like debris or uneven road surfaces. Effective thermal management significantly impacts capacity and longevity. This review emphasizes the importance of researching flame retardancy, ground impact resistance, and thermal management, especially in composite battery enclosures. Composites serve as a lightweight alternative to metals and help overcome one of the main constraints of EVs, which is weight. Ground impact refers to the physical force battery packs endure during collisions, hitting potholes, debris, or accidents. Therefore, understanding the effects of ground impact on battery enclosures is crucial for design considerations. Effective thermal management is also essential, as it directly affects the performance and safety of Lithium-ion battery packs in EVs.
Experimental Stress Analysis on Frame Structure of A 70-Passengers Electric Bus Kristianto, Stevanus Brian; Adhitya, Mohammad; Haryanto, Budi; Deprian, Lukyawan Pama; Aziz, Umar Abdul; Dwimansyah, Ridho; Sumarsono, Danardono Agus
Automotive Experiences Vol 8 No 2 (2025)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.13757

Abstract

Structural strength testing of buses using static vertical load has not previously been explored to validate the structural integrity of bus frames. In this study, the static vertical load method was employed to validate the structural strength of the Universitas of Indonesia electric bus, which utilizes two different materials SS400 for the lower frame and Aluminum Alloy 6061 for the upper frame. Finite Element Analysis (FEA) was conducted to identify critical areas on both the lower and upper frames. The stress values in the simulation were also obtained at the same location as the strain gauge placements in the experiment. Experimental vertical load testing was carried out by incrementally applying a load of 1000 kg up to the equivalent of 70 passengers, with an additional dynamic coefficient of 30% resulting in a maximum load of 6850 kg. Strain measurements were taken using 20 strain gauges on the lower frame and 8 on the upper frame. The experimental result showed the highest stress occurred at strain gauge no. 9 on the lower frame, measuring 78.10 MPa, and 15.32 MPa on the upper frame under 6850 kg load. The comparison between the simulation and experimental results reveals an 18% deviation. Nevertheless, both methods indicate the same critical area of the structure. The stress distribution indicated that the central deck area of the lower frame, where passengers sit and stand, experienced the highest loads. On the upper frame, significant stress was observed in the area where the air conditioning system is mounted. These findings demonstrate that static vertical load testing can be effectively used to validate the structural strength and stress distribution of electric buses, particularly in areas subject to concentrated loading.