Claim Missing Document
Check
Articles

Found 21 Documents
Search

PENGUJIAN DETEKSI OBJEK MANUSIA MENGGUNAKAN JETSON NANO DENGAN MODEL SSD MOBILENETV2 Aziz, Muhammad Abdul; Rachman, A Sjamsjiar; Suksmadana, I Made Budi
Jurnal Informatika Teknologi dan Sains (Jinteks) Vol 6 No 4 (2024): EDISI 22
Publisher : Program Studi Informatika Universitas Teknologi Sumbawa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51401/jinteks.v6i4.4899

Abstract

Artificial intelligence technology is advancing rapidly, one of which is through the NVIDIA Jetson Nano platform, capable of detecting objects using the SSD MobileNetV2 model. However, the use of this platform is still rare, and references regarding its performance in various lighting conditions and object densities are limited. This study aims to evaluate the performance of Jetson Nano in object detection, measure frame rate, and analyze the accuracy of SSD MobileNetV2 in bright, dim, crowded, and non-crowded conditions. Frame rate testing is conducted in real-time over 15 seconds, while accuracy is tested using a confusion matrix from 20 video frames. The results show improved performance with increased frame rate, especially in 10W power mode compared to 5W. Accuracy testing also provides data on precision, recall, and F1-Score under various conditions, including bright, dim, crowded, and non-crowded scenarios, offering insights into the factors affecting the performance of Jetson Nano and SSD MobileNetV2.
PERBANDINGAN EFEKTIVITAS PENGENDALIAN ROBOT DENGAN PENGGUNAAN PID DAN TANPA PID PADA APLIKASI JARAK TERTENTU Habibi, Aazamzain; Suksmadana, I Made Budi; Darmawan, Budi
Jurnal Informatika Teknologi dan Sains (Jinteks) Vol 6 No 4 (2024): EDISI 22
Publisher : Program Studi Informatika Universitas Teknologi Sumbawa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51401/jinteks.v6i4.4957

Abstract

A mobile robot is a type of robot that uses a wheel or leg-based propulsion system to move efficiently. This robot is highly beneficial in various industries, particularly in improving operational efficiency through autonomous movement. This research aims to examine the performance of the PID control on an encoder-based robot and evaluate its effectiveness compared to a system without PID. The research method includes designing a robot powered by a 18650 battery as the main power source, with an L298N motor driver and a DC N20 motor with an encoder connected to an Arduino microcontroller as the primary controller. An SD card module and a buck converter are also used to store operational data and regulate voltage to ensure stability. In this study, the robot's performance is tested at various distances, both with and without PID control. The test results show that without PID, the robot deviates more from the target, especially at longer distances, such as 220 cm. In contrast, with PID control, the robot is able to reach the target with higher accuracy and more controlled deviation. The use of PID also reduces variation in time and distance traveled, as well as enhances system stability. 
The Alat Pendeteksi Kadar Gula Darah Menggunakan Teknik Non-Invasive Berbasis NodeMCU ESP8266 Mulana, Nina; Darmawan, Budi; Suksmadana, I Made Budi
BEES: Bulletin of Electrical and Electronics Engineering Vol 5 No 2 (2024): November 2024
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bees.v5i2.6237

Abstract

This project focuses on the development of a non-invasive blood glucose detection device using an IoT based system with NodeMCU ESP8266 as its microprocessor. The rising health issues related to diabetes call for regular blood sampling. This study utilizes diffuse reflectance spectroscopy, where light is scattered when interacting with human issue, enabling non-invasive measurement. By integrating a photodiode and high-brightness LEDs with the NodeMCU ESP8266 microcontroller, the device measure blood glucose levels through finger placement. The result are displayed on an LCD screen and send to a Telegram Bot. this system aims to provide a convenient and painless alternative for routine blood glucose monitoring, especially for individuals with diabetes. After the design and construction of the non-invasive blood glucose detection device, testing was conducted, yielding an error percentage of 2.38% and a measurement accuracy rate of 97.62% based on ten data collection from different individuals.
Implementasi Deteksi Penyakit Tanaman Menggunakan Aplikasi Harvest Scan Berbasis Analisis Visual dengan Integrasi Cloud Computing Wati, Erna; Suksmadana, I Made Budi
Jurnal Nasional Komputasi dan Teknologi Informasi (JNKTI) Vol 7, No 6 (2024): Desember 2024
Publisher : Program Studi Teknik Komputer, Fakultas Teknik. Universitas Serambi Mekkah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32672/jnkti.v7i6.8292

Abstract

Abstrak - Cloud computing memainkan peran penting dalam mendukung aplikasi Harvest Scan untuk deteksi penyakit tanaman melalui analisis visual. Dengan memanfaatkan teknologi ini, Harvest Scan memproses dan menyimpan data gambar tanaman secara efisien, memungkinkan analisis kesehatan tanaman dan memberikan rekomendasi perawatan secara real-time kepada pengguna. Hasil uji menunjukkan akurasi deteksi sebesar 75%, yang membuktikan kemampuan aplikasi dalam mengenali dan mengklasifikasikan berbagai masalah tanaman secara cepat dan tepat. Teknologi cloud mendukung pengelolaan data skala besar dan pemantauan kondisi tanaman berkelanjutan, memberikan solusi praktis dan tepat waktu bagi petani untuk meningkatkan produktivitas dan kualitas hasil pertanian. Studi ini mengkaji bagaimana integrasi cloud computing dalam Harvest Scan mempercepat proses deteksi dan meningkatkan akurasi diagnosis, serta membahas tantangan dan manfaat implementasinya di sektor pertanian.Kata kunci: Kesehatan tanaman, deteksi penyakit, teknologi pertanian, analisis gambar, dan Harvest Scan.  Abstract  - Cloud computing plays a crucial role in supporting the Harvest Scan application for plant disease detection through visual analysis. By leveraging this technology, Harvest Scan efficiently processes and stores images of plants, enabling health analysis and providing real-time care recommendations to users. Test results indicate a detection accuracy of 75%, demonstrating the application's ability to quickly and accurately recognize and classify various plant issues. Cloud technology supports the management of large-scale data and continuous monitoring of plant conditions, providing practical and timely solutions for farmers to enhance productivity and the quality of agricultural yields. This study examines how the integration of cloud computing in Harvest Scan accelerates the detection process and improves diagnostic accuracy, while also discussing the challenges and benefits of its implementation in the agricultural sector.Keywords: Plant health, disease detection, agricultural technology, image analysis, and Harvest Scan.
Perancangan Model Machine Learning untuk Pembuatan Aplikasi Rekomendasi Menggunakan Data Pengenalan Wajah Ayuastina, Dini; Suksmadana, I Made Budi
Jurnal Nasional Komputasi dan Teknologi Informasi (JNKTI) Vol 7, No 6 (2024): Desember 2024
Publisher : Program Studi Teknik Komputer, Fakultas Teknik. Universitas Serambi Mekkah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32672/jnkti.v7i6.8249

Abstract

Abstrak - Perkembangan teknologi kecerdasan buatan, khususnya Machine Learning, telah membawa perubahan signifikan dalam berbagai industri, termasuk skincare. Penelitian ini bertujuan untuk merancang model Machine Learning yang dapat digunakan dalam pembuatan aplikasi rekomendasi produk skincare berdasarkan data pengenalan wajah. Teknologi pengenalan wajah menggunakan Convolutional Neural Network (CNN) diaplikasikan untuk menganalisis kondisi kulit wajah, seperti jerawat, flek hitam, dan noda gelap. Dengan mengidentifikasi masalah kulit secara akurat, sistem ini mampu memberikan rekomendasi produk yang sesuai dengan kebutuhan kulit pengguna. Hasil dari penelitian ini diharapkan dapat meningkatkan personalisasi dalam rekomendasi produk, serta memberikan solusi perawatan kulit yang lebih tepat dan ilmiah.Kata Kunci: Machine Learning, Rekomendasi Produk, Pengenalan Wajah, Skincare, Convolutional Neural Network (CNN), Personalization Abstract - The development of Artificial Intelligence technology, particularly Machine Learning, has brought significant changes across various industries, including skincare. This study aims to design a Machine Learning model that can be used in the development of a skincare product recommendation application based on facial recognition data. Facial recognition technology, utilizing Convolutional Neural Network (CNN), is applied to analyze facial skin conditions such as acne, dark spots, and blemishes. By accurately identifying skin issues, the system can provide product recommendations tailored to the user's skin needs. The results of this study are expected to enhance the personalization of product recommendations and provide more precise and scientific skincare solutions.Keywords: Machine Learning, Product Recommendation, Facial Recognition, Skincare, Convolutional Neural Network (CNN), Personalization
The Implementation of Deep Learning Method for Disease Detection in Tomato Plants Based on Leaf Images via Web Putra, Chaeru Rachmadi; Rachman, Amang Sjamsjiar; Suksmadana, I Made Budi
Fidelity : Jurnal Teknik Elektro Vol 7 No 1 (2025): Edition for January 2025
Publisher : Universitas Nusa Putra

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52005/fidelity.v7i1.269

Abstract

Agriculture plays a vital role in supporting the economy. Optimally and wisely managed agricultural development can encourage sustainable economic growth and equity. One example is tomato production, which has great potential to be developed. In 2021, the production of tomatoes in all Indonesian provinces reached a total of 1,114,401 tons. However, tomato production often decreases due to disease attacks on plants. Therefore, this research aimed to identify plant diseases by utilizing deep learning methods applied to web applications, so that they can be easily accessed by farmers. Its use only requires uploading images of plants to be identified into the web application. Based on the results of training and testing conducted at Google Collaboratory using two model architectures, the findings highlight that VGG16 and DenseNet121, the DenseNet121 architecture provides higher accuracy reaching 100%, while VGG16 reaches 98.58%. In addition, in web application implementation and testing with primary data, the DenseNet121 model also showed high accuracy of 92%.
Sistem Monitoring Ketinggian Permukaan Air dan Pengaturan Otomatis Pintu Air Berbasis Internet of Things Aprianti, Nurhalisa; Paniran, Paniran; Suksmadana, I Made Budi
Building of Informatics, Technology and Science (BITS) Vol 6 No 4 (2025): March 2025
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v6i4.6924

Abstract

Rainfall refers to the amount of precipitation that falls in a specific area over a certain period, typically measured in millimeters (mm). High rainfall can increase the risk of flooding. This study aims to develop an IoT-based system to detect water levels, measure rainfall, and automatically control the opening and closing of floodgates. The collected data is permanently stored in a database and can be monitored remotely. The researchers utilized an Arduino Mega 2560 microcontroller and an ESP32 to process data, an ultrasonic sensor to measure water level (in cm), and a rainfall sensor (in mm). The data is transmitted to a Firebase database and connected to a Telegram bot, allowing administrators to monitor it in real time. The system classifies water levels into four categories: safe (0–30 cm), alert (31–40 cm), warning (41–50 cm), and danger (51–60 cm). Rainfall intensity is also categorized into four levels: light (0.5–20 mm/h), moderate (20–50 mm/h), heavy (50–100 mm/h), and extreme (more than 100 mm/h). The system automatically adjusts the floodgates based on water conditions but also allows for manual control. The sensors demonstrated an average accuracy of 97%, with an average notification delay of 675 ms during extreme rainfall conditions.
Rancang Bangun Sistem Kontrol Ph Air dan Pemberian Pakan Ikan Otomatis Pada Akuaponik Berbasis Mikrokontroler Pradana, Ersa Satria; Ch, Syafaruddin; Suksmadana, I Made Budi
Journal of Information System Research (JOSH) Vol 6 No 1 (2024): Oktober 2024
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/josh.v6i1.6122

Abstract

Aquaponics is an integrated system that combines fish farming and plant cultivation in a mutually beneficial ecosystem. In this system, plants utilize nutrients produced from fish waste, while also helping to maintain water quality. However, farmers often face difficulties in managing water pH and feeding fish due to their busy schedules or other activities. And also excess feeding can accelerate changes in pond pH. This is because the remaining uneaten feed will decompose in the water, resulting in ammonia compounds that have the potential to increase the pH in the pond. Therefore, this research aims to design an automated device to regulate feeding and control water pH. Arduino is used as the central controller to manage sensors and automate the system. Water quality is measured using a pH sensor with an accuracy level of 95%. The pH control system in fish ponds functions to maintain water quality at the optimal range for fish health. Feeding is carried out according to a set schedule, and the feed throwing distance is adjusted based on voltage. The results of this system show that water pH remains stable, fish and plants are in good condition, and it helps farmers easily maintain water quality and nutrients for both fish and plants. Thus, this device can provide a practical solution for farmers needing automation in the aquaponics process.
PENGUATAN KAPASITAS MASYARAKAT DALAM PENANGGULANGAN KEBAKARAN DENGAN PENGGUNAAN APAR DI DESA SANDIK KECAMATAN BATULAYAR LOMBOK BARAT: PENGUATAN KAPASITAS MASYARAKAT DALAM PENANGGULANGAN KEBAKARAN DENGAN PENGGUNAAN APAR DI DESA SANDIK KECAMATAN BATULAYAR LOMBOK BARAT Wiryajati, I Ketut; Adnyani, Ida Ayu Sri; Citarsa, Ida Bagus Fery; Seniari, Ni Made; Satiawan, I Nyoman Wahyu; Suksmadana, I Made Budi; Yadnya, Made Sutha; Supriono, Supriono; Ramadhani, Cipta
Jurnal Pepadu Vol 6 No 1 (2025): Jurnal Pepadu
Publisher : Universitas Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/pepadu.v6i1.7231

Abstract

Desa Sandik, Kecamatan Batulayar, Lombok Barat, memiliki risiko kebakaran yang tinggi, terutama selama musim kemarau. Namun, kesadaran masyarakat mengenai pencegahan dan penanggulangan kebakaran, termasuk penggunaan Alat Pemadam Api Ringan (APAR), masih sangat terbatas. Untuk mengatasi masalah ini, dilakukan program penguatan kapasitas melalui pelatihan dan simulasi penggunaan APAR. Pelatihan ini melibatkan berbagai elemen masyarakat dan memberikan pengetahuan serta keterampilan praktis tentang cara penanggulangan kebakaran yang efektif. Hasil evaluasi menunjukkan peningkatan signifikan dalam pemahaman dan keterampilan peserta terkait penggunaan APAR serta kesadaran akan pentingnya kesiapsiagaan kebakaran. Meskipun demikian, tantangan berupa kurangnya motivasi masyarakat untuk berpartisipasi dan keterbatasan jumlah APAR di desa ini masih perlu diatasi. Program ini telah berhasil meningkatkan kesiapan masyarakat Desa Sandik dalam menghadapi potensi kebakaran dan dapat dijadikan model untuk diterapkan di wilayah lain yang memiliki risiko serupa.
Program Residu Minyak Jelantah Sebagai Aroma Terapi : Program Residu Minyak Jelantah Sebagai Aroma Terapi Sultan, Sultan; Yadnya, Made Sutha; Wiryajati, I Ketut; Adnyani, Ida Ayu Sri; Citarsa, Ida Bagus Fery; Satiawan, I Nyoman Wahyu; Suksmadana, I Made Budi
Jurnal Pepadu Vol 6 No 2 (2025): Jurnal Pepadu
Publisher : Universitas Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/pepadu.v6i2.7289

Abstract

Pemikiran untuk pengolahan hasil buang produksi terus dikembangkan untuk memperoleh pengasilan lebih dan meminimalisir hal yang negative (residu). Masalah residu dari minyal jelantah perlu dipikirkan agar dapat lebih bermanfaat. Salah satu pengembangan adalah pemanfaatan minyak jelantah merupakan dari limbah rumah tangga. Minyak ini  sering kali dibuang tanpa proses pengolahan lebih lanjut.  Hal ini mempunyai potensi besar  diubah menjadi produk bernilai ekonomis tinggi. Minyak hasil buang ini ditambahkan dengan  inovasi penambahan zat aditive dalam pembuatan lilin aroma terapi berbasis minyak jelantah. Keunggulan utama adalh dapat mengurangi pencemaran lingkungan dengan berputarnya energi yang diperoleh dari proses.  Peluang untuk membuka lapangan kerja serta  usaha berkelanjutan. Pengolahan  minyak jelantah yang salah dengan dibuang secara sembarangan  untuk menjadi produk UMKM dapat mencemari lingkungan lebih-lebih pada tanah dan air. Pengolahan yang ditawarkan menjadi produk bermanfaat mendukung prinsip ekonomi sirkular. Produksi secara rumahan terus dikembangakan sesuai dengan permintaan konsumen khusus pada aroma terapinya.