Claim Missing Document
Check
Articles

Found 24 Documents
Search

Sistem Pemantau Suhu Tambal Ban Berbasis Mikrokontroler Nodemcu Esp8266 Ramadani, Vira; Nasution, Mulkan Iskandar; Mastura, Mastura
Jurnal Fisika Unand Vol 13 No 3 (2024)
Publisher : Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jfu.13.3.379-384.2024

Abstract

Kebocoran ban adalah salah satu kendala saat mengendarai sepeda motor, sehingga memungkinkan pengendara untuk langsung menggantikan ban. Penyebab kebocoran tersebut disebabkan adanya benda yang tertusuk di permukaan ban. Tujuan penelitian ini yaitu merancang sistem perbaikan kebocoran ban berbasis mikrokontroler nodemcu esp8266 dan mengetahui unjuk kerja sistem perbaikan kebocoran ban berbasis mikrokontroler nodemcu esp8266. Perancangan sistem pada penelitian ini menggunakan Atmega328. Alat sistem kontrol tersebut dapat bekerja sesuai instrument pendukung-pendukungnya menggunakan suhu panas agar alat beroperasi dan terhubung dengan koneksi aplikasi blynk. Sistem pendukung ada dua jenis yaitu berupa sensor thermocouple dan sensor arus, sehingga proses perancangan ini dilaksanakan pada kedua pendukung tersebut. Pengujian dilakukan sebanyak 3 kali. Pengujian pertama menggunakan suhu  165,7-172 °C dengan waktu 3 menit  dan hasil  tambalan tidak matang sehingga tambalan tidak merekat pada bagian yang mengalami kebocoran ban. Pengujian kedua menggunakan suhu 178-180,2 °C dengan waktu 4 menit dan hasil tambalan hampir matang sehingga tambalan tidak bisa menahan beban yang besar dan tidak tahan digunakan terlalu lama. Pengujian ketiga menggunakan suhu 183-185,7 °C dengan waktu 5 menit dan hasil tambalan matang sehingga tambalan merekat dengan baik dan dapat digunakan. Kata kunci:Kebocoran, ban, sensor suhu, arus, aplikasi blynk.
MONITORING PROSES PRODUKSI GAS HIDROGEN MELALUI ELEKTROLISIS AIR BERBASIS INTERNET OF THINGS Pohan, Putri Rahmadani; Nasution, Mulkan Iskandar; Masthura, Masthura; Nasution, Syahrul Ardiansyah
JOURNAL OF SCIENCE AND SOCIAL RESEARCH Vol 8, No 4 (2025): November 2025
Publisher : Smart Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54314/jssr.v8i4.4839

Abstract

Abstract: This research, entitled "Design and Construction of Hydrogen Gas Production Process Through Water Electrolysis Based on Internet of Things (IoT)", aims to design a hydrogen production system and IoT-based remote monitoring. The electrolysis process is carried out using stainless steel electrodes with KOH electrolyte solution and is powered by a DC power supply. The system is equipped with an MQ-8 sensor to detect hydrogen gas concentration and a K-type thermocouple temperature sensor with a MAX6675 module to monitor the solution temperature. Sensor data is processed by an ESP32 microcontroller, displayed via LCD, and sent to the Blynk application for real-time monitoring. Test results show that the increase in voltage and current is directly proportional to the increase in temperature and the concentration of hydrogen gas produced. At a voltage of 31 V with a current of around 0.48 A, hydrogen gas production of 293 ppm with a temperature of 31.8 °C was obtained. The designed system is proven to be able to produce hydrogen gas through water electrolysis, while providing effective, efficient, and remotely accessible IoT-based monitoring. Keyword: Water Electrolysis, Hydrogen Gas, MQ-8 Sensor, K-Type Thermocouple, ESP32, Internet of Things (IoT) Abstrak: Penelitian ini berjudul “Rancang Bangun Proses Produksi Gas Hidrogen Melalui Elektrolisis Air Berbasis Internet of Things (IoT)” yang bertujuan merancang sistem produksi hidrogen sekaligus monitoring jarak jauh berbasis IoT. Proses elektrolisis dilakukan menggunakan elektroda stainless steel dengan larutan elektrolit KOH dan diberi suplai daya dari power supply DC. Sistem dilengkapi sensor MQ-8 untuk mendeteksi konsentrasi gas hidrogen dan sensor suhu termokopel tipe-K dengan modul MAX6675 untuk memantau temperatur larutan. Data sensor diolah oleh mikrokontroler ESP32, ditampilkan melalui LCD, dan dikirim ke aplikasi Blynk agar dapat dimonitor secara real-time. Hasil pengujian menunjukkan bahwa peningkatan tegangan dan arus berbanding lurus dengan kenaikan suhu serta konsentrasi gas hidrogen yang dihasilkan. Pada tegangan 31 V dengan arus sekitar 0,48 A, diperoleh produksi gas hidrogen sebesar 293 ppm dengan suhu 31,8 °C. Sistem yang dirancang terbukti mampu memproduksi gas hidrogen melalui elektrolisis air, sekaligus menyediakan pemantauan berbasis IoT yang efektif, efisien, dan dapat diakses jarak jauh. Kata kunci: Elektrolisis Air, Gas Hidrogen, Sensor MQ-8, Termokopel Tipe-K, ESP32, Internet of Things (IoT) 
PENGARUH PENGGUNAAN SUMBER ENERGI POWER SUPPLY DAN PWM DC TERHADAP EFISIENSI REAKTOR HIDROGEN Sulistiawati, Siti; Nasution, Mulkan Iskandar; Ong, Russell
JOURNAL OF SCIENCE AND SOCIAL RESEARCH Vol 8, No 4 (2025): November 2025
Publisher : Smart Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54314/jssr.v8i4.4836

Abstract

Abstract: Hydrogen was chosen as an environmentally friendly alternative energy obtained through the water electrolysis process. In addition to being environmentally friendly, hydrogen also has a high level of electrical energy efficiency. This study aims to determine the effect of the use of electrical energy sources and frequency on the efficiency of a water electrolysis-based hydrogen reactor and to determine the use of energy sources in a hydrogen reactor as an optimal hydrogen producer. The water electrolysis process is influenced by factors such as voltage, current, power, and frequency given to the reactor. Tests were carried out with variations in voltage of 20V, 22V, 24V, 26V, 28V and 30V and frequencies of 23.69kHz, 24.87kHz, 25.64kHz, 26.31kHz, 26.73kHz. The parameters observed include voltage, current, power, H2 gas yield in ppm, temperature, and hydrogen production efficiency in %. The results of the study showed that the effect of using a frequency source was able to achieve a higher efficiency of 41% with an average current of 0.29A, an average power of 7.12 watts, with an average temperature of 30.150C, while the use of a Power Supply Amplifier (PSA) electrical energy source only produced an efficiency of 25%, with an average current of 0.38A, an average power of 9.81 watts, and an average temperature of 28.50C. The optimal value at the highest efficiency was obtained at an optimal frequency of 23.69 kHz with a temperature of 29.00C, a current of 0.20A, a power of 4.8 watts, and an efficiency of 51.57%. Keyword: Electrolysis, Hydrogen, Frequency, Power Supply, Efficiency Abstrak: Hidrogen dipilih sebagai energi alternatif ramah lingkungan yang diperoleh melalui proses elektrolisis air. Selain ramah lingkungan, hidrogen juga memiliki tingkat efisiensi energi listrik yang tinggi. Penelitian ini bertujuan untuk mengetahui pengaruh penggunaan sumber energi listrik dan frekuensi terhadap efisiensi reaktor hidrogen berbasis elektrolisis air dan untuk mengetahui penggunaan sumber energi pada reaktor hidrogen sebagai penghasil hidrogen yang optimal. Proses elektrolisis air dipengaruhi oleh faktor tegangan, arus, daya, serta frekuensi yang diberikan pada reaktor. Pengujian dilakukan dengan variasi tegangan 20V, 22V, 24V, 26V, 28V dan 30 V dan frekuensi pada 23,69kHz, 24,87kHz, 25,64kHz, 26,31kHz, 26,73kHz. Parameter yang diamati meliputi tegangan, arus, daya, hasil gas H2 dalam ppm, suhu, serta efisiensi produksi hidrogen dalam satuan %. Hasil penelitian menunjukkan bahwa pengaruh penggunaan sumber  frekuensi mampu mencapai efisiensi lebih tinggi yaitu sebesan 41% dengan arus rata-rata 0,29A, daya rata-rata 7,12watt, dengan suhu rata-rata 30,150C, Sedangkan pada penggunaan sumber energi listrik Power Supply Amplifier (PSA) hanya menghasilkan efisinesi sebesar 25%, dengan arus rata-rata 0,38A, daya rata-rata 9,81 watt, dan suhu rata-rata 28,50C. Nilai optimal pada efisiensi tertinggi diperoleh pada frekuensi optimal 23,69 kHz dengan suhu 29,00C, arus 0,20A, daya 4,8 watt, dan efisiensi 51,57%. Kata kunci: Elektrolisis, Hidrogen, Frekuensi, Power Supply, Efisiensi     
Design of Measurement System for Laboratory-Scale Resistivity Meter with ADS1115 and Buffer Lubis, Lailatul Husna; Kasma, Doan Aditya; Nasution, Mulkan Iskandar
POSITRON Vol 15, No 2 (2025): Vol. 15 No. 2 Edition
Publisher : Fakultas Matematika dan Ilmu Pengetahuan Alam, Univetsitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/positron.v15i2.99679

Abstract

A resistivity meter relies on its measurement system as a crucial part that determines the accuracy of data acquisition in geoelectrical methods. Previous developments in digital resistivity meters using voltage sensor modules, INA219 modules, and ACS712 modules have shown limitations in terms of accuracy and the resolution of their analog-to-digital converters (ADC). These shortcomings can be overcome by integrating the ADS1115 module, which converts analog sensor signals into precise digital outputs down to the millivolt range. NodeMCU ESP32 is used to process digital signals from the ADS1115 into current and voltage readings displayed on the LCD; then data monitoring and download can be performed via the website. Measurement data is stored on a microSD card with date and time synchronization from the DS3231 real-time clock (RTC) module. Calibration results show very high linearity in the input range of ±30–500 mA for current and ±0.0005–6.5 V for voltage, with an R² value of 0.999, indicating that the regression equation is can used to describes the sensitivity characteristics of the measurement system. Accuracy tests resulted in an average of 99.8% for the current measurement system and 99.9% for the voltage measurement system, suggesting that sensor readings closely align with the results of standard measuring instruments like multimeters. Prototype testing in laboratory-scale produced inverse modeling graph with the first layer of homogeneous sand samples and the first and second layers of sand mixed with gravel samples in accordance with previous studies, by the RMS error obtained for each sampel were 26.58% and 39.70%.