Claim Missing Document
Check
Articles

Found 28 Documents
Search

RANCANG BANGUN APLIKASI SISTEM PAKAR UNTUK MENDIAGNOSA PENYAKIT PADA BALITA MENGGUNAKAN METODE DEMPSTER SHAFER DENGAN PENELUSURAN FORWARD CHAINING BERBASIS ANDROID Muhammad Surahmanto; Bahari Putra, Fajar Rahardika; Muhammad Rizki Setyawan; Ahmad Ilham
Jurnal Mahajana Informasi Vol 10 No 1 (2025): JURNAL MAHAJANA INFORMASI
Publisher : Universitas Sari Mutiara Indonesia Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51544/jurnalmi.v10i1.6079

Abstract

Penelitian ini bertujuan untuk merancang dan membangun aplikasi sistem pakar berbasis Android guna mendiagnosis penyakit pada balita menggunakan metode Dempster-Shafer dan penelusuran Forward Chaining. Aplikasi ini dikembangkan sebagai solusi terhadap pentingnya deteksi dini penyakit pada balita, mengingat masa usia dini merupakan fase pertumbuhan yang sangat krusial. Dengan memanfaatkan metode Dempster-Shafer, sistem mampu mengolah ketidakpastian data gejala dan menghasilkan diagnosis yang akurat, sementara Forward Chaining berperan dalam menelusuri aturan berbasis fakta yang tersedia. Hasil yang di dapat yakni 98% pilek berdasarkan deteksi penyakit dan pengujian dengan metode black box menunjukkan bahwa aplikasi berjalan sesuai fungsinya dan hasil diagnosis konsisten dengan perhitungan manual. Penelitian ini menunjukkan potensi penerapan kecerdasan buatan dalam mendukung pelayanan kesehatan anak, serta membuka peluang pengembangan sistem pakar berbasis Android yang lebih luas di masa mendatang. Saran kedepan agar lebih di perdalam lagi dalam proses mengidentifikasi penyakit balita dengan metode lainnya.
Klasifikasi Kunyit dan Temulawak dengan VGG16 dan Fuzzy Tsukamoto Berbasis Android Setyawan, Muhammad Rizki; Bahari Putra, Fajar Rahardika; Ilham, Ahmad; Suseno, Dimas Adi
JURIKOM (Jurnal Riset Komputer) Vol 12, No 3 (2025): Juni 2025
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/jurikom.v12i3.8696

Abstract

Indonesia has a very rich biodiversity, including various medicinal plants that are highly financially beneficial and health-promoting. Among these medicinal plants, temulawak and turmeric are the two most popular rhizomes widely used in traditional medicine as well as the herbal industry. However, because the shape and color of these two plants are very similar, it is often difficult to distinguish between them, especially for laypeople and new industry workers. This research developed an Android-based application that can effectively and accurately distinguish between temulawak and turmeric to address this issue. For this application, the Convolutional Neural Network (CNN) architecture of the VGG-16 model is used along with the Tsukamoto fuzzy method as an additional layer. The trials conducted on the developed model using test data showed an accuracy rate of 0.97, a recall value of 0.98, and an F1 score of 0.97. Meanwhile, the blackbox testing shows that this application functions stably without technical issues, making it ready for use. Additionally, blackbox testing shows that the system can function stably without any issues, making it suitable for real-world use
SOSIALISASI DAN PELATIHAN PENGGUNAAN LMS BERBASIS MOODLE PADA YAYASAN SEKOLAH ADVENT DI SAUSAPOR Sundari, Sundari; Kahar, Muhammad Syahrul; Sangadji, Zulkarnain; Setyawan, Muhammad Rizki; Ilham, Ahmad; Febriadi, Ihsan
Journal of Community Empowerment Vol 4, No 2 (2025): September
Publisher : Universitas Muhammadiyah Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31764/jce.v4i2.34137

Abstract

ABSTRAK                                                                 Transformasi digital menuntut peningkatan literasi digital guru, khususnya dalam pemanfaatan Learning Management System (LMS). Di Distrik Sausapor, Papua Barat Daya, meskipun infrastruktur jaringan memadai, keterampilan guru dalam menggunakan LMS berbasis Moodle masih terbatas. Kegiatan pengabdian ini dilaksanakan bersama Yayasan Pendidikan Advent Sausapor sebagai mitra, melibatkan 25 guru dari jenjang SD, SMP, dan SMA pada Juli 2025. Metode yang digunakan adalah Participatory Action Research (PAR) melalui empat tahap: (1) perencanaan, meliputi koordinasi dengan mitra untuk menentukan kebutuhan, peserta, dan jadwal; (2) persiapan, penyusunan modul pelatihan serta instrumen pre-test dan post-test dengan dukungan fasilitas komputer dan internet sekolah; (3) pelaksanaan, berupa dua hari kegiatan sosialisasi dan praktik pembuatan kelas virtual, unggah materi ajar, penyusunan kuis, forum diskusi, dan sistem penilaian otomatis; (4) evaluasi, menggunakan pre-test dan post-test. Hasil menunjukkan peningkatan rata-rata sebesar 74,1% pada seluruh aspek pengetahuan dan keterampilan. Temuan ini menegaskan bahwa peserta tidak hanya memahami konsep dasar Moodle, tetapi juga mampu mengaplikasikannya secara efektif dalam proses pembelajaran. Kegiatan ini memberikan kontribusi nyata dalam memperkuat kompetensi guru serta menjadi langkah awal membangun ekosistem pembelajaran digital yang inklusif dan adaptif. Kata kunci: LMS Moodle; literasi digital; pembelajaran digital; pelatihan guru; PAR ABSTRACTThe digital transformation demands an increase in teachers’ digital literacy, particularly in utilizing Learning Management Systems (LMS). In Sausapor District, Southwest Papua, although network infrastructure is adequate, teachers’ skills in using Moodle-based LMS remain limited. This community service program was carried out in collaboration with the Sausapor Advent Education Foundation as a partner, involving 25 teachers from elementary, junior high, and senior high schools in July 2025. The method employed was Participatory Action Research (PAR) through four stages: (1) planning, including coordination with partners to determine needs, participants, and schedule; (2) preparation, which involved developing training modules and pre-test and post-test instruments supported by the school’s computer and internet facilities; (3) implementation, consisting of two days of activities such as socialization, virtual class creation, digital material uploads, quiz development, discussion forums, and automatic grading systems; (4) evaluation, using pre-tests and post-tests. The results indicated an average improvement of 74.1% across all aspects of knowledge and skills. These findings confirm that participants not only understood the basic concepts of Moodle but were also able to apply them effectively in the learning process. This activity provides a tangible contribution to strengthening teachers’ competencies and serves as an initial step in building an inclusive and adaptive digital learning ecosystem.. Keywords: LMS Moodle; digital literacy; digital learning; teacher training; PAR
PKM Pengembangan Website sebagai Media Promosi Pulau Soop, Kota Sorong Mohammad Arief Nur Wahyudien; Mirga Maulana Rachmadhani; Siti Nur Kayatun; Muhammad Rizki Setyawan; Rahmatullah Bin Arsyad; Umar Rusli Marasabessy; Marlinda Indah Eka Budiarti; Bekti Wiji Lestari
Abdimas: Papua Journal of Community Service Vol. 6 No. 2 (2024): Juli
Publisher : Lembaga Pengembangan dan Pengabdian Masyarakat Universitas Muhammadiyah Sorong

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33506/pjcs.v6i2.3459

Abstract

Papua Barat Daya adalah provinsi di Timur Indonesia yang masih jarang dikunjungi wisatawan. Provinsi ini kaya akan sumber daya alam, dengan tanah subur yang cocok untuk pertanian dan lautan dengan keanekaragaman biota laut. Salah satu destinasi menarik di Papua Barat Daya adalah Pulau Soop, dengan luas sekitar 2,67 km² dan populasi 1.378 jiwa. Pulau Soop dapat dicapai dalam 20 menit menggunakan kapal boat dari pelabuhan SAR. Pulau Soop menawarkan pantai indah dengan pepohonan kelapa yang rimbun, menciptakan suasana asri. Pulau ini memiliki tempat wisata bahari menarik seperti Pantai Pasir Putih, Goa Jepang, Sumur Belanda, dan Tanjung Lampu. Semua tempat ini menawarkan pengalaman unik bagi pengunjung. Namun, informasi tentang potensi alam dan wisata Pulau Soop masih terbatas dan belum banyak dipublikasikan. Oleh karena itu, dilakukan kegiatan Pengabdian Kepada Masyarakat dengan membuat situs web informasi untuk memperkenalkan Pulau Soop kepada masyarakat dan wisatawan. Situs web ini memberikan informasi komprehensif tentang keindahan dan potensi wisata Pulau Soop. Diharapkan, melalui situs web ini, Pulau Soop bisa lebih dikenal, menarik lebih banyak wisatawan, dan membantu meningkatkan perekonomian masyarakat setempat melalui pengembangan sektor pariwisata.
Klasifikasi Kunyit dan Temulawak dengan VGG16 dan Fuzzy Tsukamoto Berbasis Android Setyawan, Muhammad Rizki; Bahari Putra, Fajar Rahardika; Ilham, Ahmad; Suseno, Dimas Adi
JURNAL RISET KOMPUTER (JURIKOM) Vol. 12 No. 3 (2025): Juni 2025
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/jurikom.v12i3.8696

Abstract

Indonesia has a very rich biodiversity, including various medicinal plants that are highly financially beneficial and health-promoting. Among these medicinal plants, temulawak and turmeric are the two most popular rhizomes widely used in traditional medicine as well as the herbal industry. However, because the shape and color of these two plants are very similar, it is often difficult to distinguish between them, especially for laypeople and new industry workers. This research developed an Android-based application that can effectively and accurately distinguish between temulawak and turmeric to address this issue. For this application, the Convolutional Neural Network (CNN) architecture of the VGG-16 model is used along with the Tsukamoto fuzzy method as an additional layer. The trials conducted on the developed model using test data showed an accuracy rate of 0.97, a recall value of 0.98, and an F1 score of 0.97. Meanwhile, the blackbox testing shows that this application functions stably without technical issues, making it ready for use. Additionally, blackbox testing shows that the system can function stably without any issues, making it suitable for real-world use
Penerapan Aromaterapi Lemon untuk Mengatasi Nyeri pada Pasien Post Laparatomi e.c Hernia Umbilikal di Ruang Bedah RSUP Dr. M. Djamil Padang Setyawan, Muhammad Rizki
Jurnal Keperawatan Sehat Mandiri Vol 2 No 2 (2024): Jurnal Keperawatan Sehat Mandiri, Volume 2 No.2 November 2024
Publisher : Jurusan Keperawatan Mandiri Poltekkes Kemenkes Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33761/jkpm.v2i2.1547

Abstract

Laparotomy is an open surgical procedure that requires a sufficiently large incision to access the abdominal cavity and it’s organs for diagnosis, repair, or removal of diseased or injured organs. Based on disease data from the women's surgical ward in April 2024, there were 5 patients undergoing laparotomy, as laparotomy remains a common open abdominal surgery today. This final paper aims to provide information on the application of lemon aromatherapy to reduce pain intensity in post-laparotomy e.c umbilical hernia patients in the surgical ward of RSUP Dr. M. Djamil Padang. The study design used a case report, with the population consisting of all post laparotomy patients in April, totaling 5 individuals. The sample included 2 clients with specific characteristics based on inclusion and exclusion criteria, and pain assessment was conducted using the Numerical Rating Scale (NRS). The evaluation results showed that the intervention of lemon aromatherapy for Ms. M and Ms. L in reducing post-laparotomy pain demonstrated a change in pain scale before and after therapy. For both clients, there was a reduction in pain scale: Ms.M’s pain decreased from 6 to 2, and Ms. L’s pain decreased from 5 to 1. The recommendation of this study is that lemon aromatherapy should be considered as one of the interventions that nurses can use to reduce post laparotomy pain intensity. Keywords: Aromatherapy, Lemon Essential, Pain, Laparotomy Surgery
Sistem Informasi Pencarian Rumah Sakit, Puskesmas Dan Dokter Praktek Berbasis Android Wattimena, Mikhael; Rendra Soekarta; Muhammad Rizki Setyawan
Framework : Jurnal Ilmu Komputer dan Informatika Vol 2 No 01 (2023): Framework : Jurnal ilmu komputer dan Informatika
Publisher : Universitas Muhammadiyah Sorong

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33506/jiki.v2i01.3042

Abstract

Penggunaan teknologi informasi dan komunikasi, khususnya aplikasi mobile, dapat menjadi solusi dalam memberikan akses informasi kesehatan yang mudah dan cepat bagi masyarakat. Dalam hal ini, pengembangan sistem informasi pencarian rumah sakit, puskesmas, dan dokter praktek berbasis android merupakan salah satu bentuk solusi yang dapat dilakukan. Tujuan dari penelitian ini adalah untuk membangun sistem pencarian rumah sakit, puskesmas dan dokter praktek. Sistem yang dibangun berisi detail alamat rumah sakit, puskesmas dan dokter praktek yang ada di seluruh Kota Sorong juga dapat mendeteksi jarang terdekat sesuai lokasi tempat pengguna. Oleh karena itu aplikasi ini dapat mempermudah pengguna yang baru berkunjung ke Kota Sorong. Aplikasi ini dibangun menggunakan bahasa pemograman android ditambah dengan metode SAW (Simple Additive Weighting) yang merupakan salah satu metode yang digunakan dalam proses pengambilan suatu keputusan. Metode SAW ini merupakan metode yang mencari penjumlahan terbobot dari rating kinerja pada setiap alternatif pada semua atribut. Selain itu aplikasi didukung tampilan yang mudah dipahami. Hal ini didukung juga dengan usability testing sebesar 80% dan didukung dengan pengujian black box yang dapat menguji kebutuhan fungsional aplikasi.
Detection of Curcuma and Turmeric Differences Utilizing Fuzzy Tsukamoto Android-Based CCN Model Putra, Fajar Rahardika Bahari; Setyawan, Muhammad Rizki; Ilham, Ahmad; Suseno, Dimas Adi
ILKOM Jurnal Ilmiah Vol 17, No 3 (2025)
Publisher : Prodi Teknik Informatika FIK Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/ilkom.v17i3.2857.276-291

Abstract

Turmeric and curcuma are herbs that are often used in medicine and cooking. However, their similar shapes and colours make it difficult for people, especially in Southwest Papua, to distinguish between them directly. According to the Central Statistics Agency (BPS) in 2023, turmeric production reached 18,302 units, far higher than turmeric, which only reached 2,950 units. Based on field interviews in Southwest Papua, more than 60% of respondents had difficulty distinguishing turmeric from turmeric. To address this issue, this research develops an Android-based classification system by integrating the Fuzzy Tsukamoto algorithm with Convolutional Neural Network (CNN) models. Five CNN models VGG16, MobileNetV2, NASNetMobile, EfficientNetB2, and EfficientNetB3 were selected based on their balance between computational efficiency (MobileNetV2, NASNetMobile), depth and proven stability (VGG16), and modern scalable architectures (EfficientNetB2 and B3). Each model was combined with fuzzy logic to enhance classification accuracy. he dataset consisted of 800 images of curcuma and turmeric obtained from Kaggle and field collections. The data were divided into training, validation, and testing sets, and augmented through a series of transformations including rescaling to a range of 0 to 1, rotation up to 40 degrees, horizontal shift of 20%, angular distortion (shear) of 20%, zoom up to 30%, horizontal flipping, and brightness adjustment. Empty areas generated during augmentation were filled using the nearest pixel value with the ‘nearest’ mode to preserve image integrity. Training was performed using the AdamW optimizer and fine-tuning. Model evaluation employed accuracy, precision, recall, F1-score, and confusion matrix metrics. The results showed that the VGG16 model performed best, achieving 97% accuracy, 98% precision, 97% recall, and 98% F1-score, as confirmed by the classification report and confusion matrix. This model was also the most stable when tested on the Android system, while EfficientNetB2 and B3 produced less satisfactory outcomes. These findings demonstrate that combining CNN and Fuzzy Tsukamoto improves the classification accuracy of images with high visual similarity. The proposed system has the potential to be applied as a direct plant identification tool in the field and can be further extended to classify other visually similar plants