Pesawat Tanpa Awak (Unmanned Aerial Vehicle atau UAV) adalah kendaraan udara yang beroperasi tanpa pilot, dan semakin banyak digunakan untuk berbagai misi sipil maupun militer. Pemilihan material UAV sangat penting karena memengaruhi performa struktural, efisiensi, dan keselamatan. Penelitian ini menganalisis pengaruh variasi material dan kecepatan tumbukan terhadap respons struktural fuselage UAV Ritewing Drak menggunakan metode elemen hingga. Tiga material diuji, yaitu kevlar, carbon fiber, dan fiber glass, dengan kecepatan tumbukan 4 m/s, 6 m/s, dan 8 m/s. Hasil simulasi menunjukkan bahwa kevlar memiliki nilai indeks kegagalan Tsai-Hill terendah sebesar 0,03411, lebih baik dibandingkan carbon fiber (0,03788) dan fiber glass (0,04121). Ketiga material menunjukkan deformasi plastik pada foam, namun masih dalam batas aman karena nilai Tsai-Hill tidak melebihi kriteria kegagalan. Peningkatan kecepatan menyebabkan peningkatan nilai Tsai-Hill dan deformasi: pada 4 m/s, 6 m/s, dan 8 m/s berturut-turut menghasilkan nilai Tsai-Hill sebesar 0,0211; 0,0261; dan 0,0341, serta nilai equivalent plastic strain pada foam sebesar 5,125; 10,29; dan 18,74. Simulasi membuktikan bahwa struktur UAV dengan material kevlar mampu memenuhi syarat kelaiktabrakan dan layak digunakan untuk aplikasi yang membutuhkan ketahanan benturan. Unmanned Aerial Vehicles (UAVs), commonly known as drones, are aircraft that operate without an onboard pilot and are increasingly used in both civil and military applications. Material selection plays a critical role in UAV design, as it directly affects structural performance, energy efficiency, payload capacity, and operational safety. This study investigates the effect of material variation and impact velocity on the structural response of the Ritewing Drak UAV fuselage using the Finite Element Method (FEM). Three materials—kevlar, carbon fiber, and fiberglass—were evaluated under impact velocities of 4 m/s, 6 m/s, and 8 m/s. Simulation results indicate that kevlar exhibits the best crashworthiness performance, with the lowest Tsai-Hill failure index of 0.03411, compared to carbon fiber (0.03788) and fiberglass (0.04121). All materials experienced significant plastic deformation in the foam component, yet remained within acceptable limits, as their Tsai-Hill values did not exceed the critical failure threshold. Increasing impact velocity resulted in higher Tsai-Hill values and greater deformation: at 4 m/s, 6 m/s, and 8 m/s, the Tsai-Hill indices were 0.0211, 0.0261, and 0.0341 respectively, with equivalent plastic strain in the foam of 5.125, 10.29, and 18.74. These findings suggest that kevlar is the most suitable material for UAV fuselages in applications requiring high crashworthiness, as it provides superior structural integrity under impact conditions.