Claim Missing Document
Check
Articles

Found 30 Documents
Search

Klasifikasi Tumor Payudara Berbasis Ciri Tekstur pada Citra Mammografi Menggunakan Metode Naive Bayes BELLA JULIA; HENI SUMARTI; HAMDAN HADI KUSUMA
MIND (Multimedia Artificial Intelligent Networking Database) Journal Vol 7, No 2 (2022): MIND Journal
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/mindjournal.v7i2.165-176

Abstract

ABSTRAKKanker payudara adalah jenis kanker yang terjadi pada sebagian besar wanita. Kanker payudara terjadi akibat pertumbuhan berlebih atau perkembangan sel jaringan payudara yang tidak terkendali. Mammografi merupakan metode terbaik untuk deteksi dini kanker payudara karena dapat menunjukkan lesi secara dini. Namun, analisis terhadap mammogram ini masih dilakukan secara manual oleh ahli medis, sehingga perlu perangkat tambahan. Telah banyak penelitian tentang olah citra untuk deteksi kanker secara otomatis. Pada penelitian ini digunakan metode Naive Bayes untuk klasifikasi citra tumor jinak dan tumor ganas. Tujuan dari penelitian ini untuk mengklasifikasi citra mammografi berdasarkan dua kelas yaitu tumor jinak dan tumor ganas dengan berbasis ciri tekstur menggunakan histogram dan Gray Level Co-occurrence Matrix  (GLCM). Penelitian ini menunjukkan hasil akurasi sebesar 80%, sensitivitas sebesar 90%, dan spesifitas sebesar 70%. Oleh karena itu, penelitian ini bisa dijadikan perangkat tambahan untuk klasifikasi tumor payudara ganas dan jinak.Kata kunci: Tumor Payudara, Mammografi, Klasifikasi Naive Bayes.ABSTRACTBreast cancer is a type of cancer that occurs in most women. Breast cancer occurs due to overgrowth or uncontrolled development of breast tissue cells. Mammography is the best method for early detection of breast cancer because it can show lesions early. However, the analysis of this mammogram is still done manually by medical experts, so additional devices are needed. There have been many studies on image processing for automatic detection. In this study, the Naive Bayes method was used to classify images of benign tumors and malignant tumors. The purpose of this study is to classify mammographic images based on two classes, namely benign and malignant tumors based on histogram textures and Gray Level Co-occurrence Matrix (GLCM). This study showed an accuracy of 80%, sensitivity of 90%, and specificity of 70%. Therefore, this study can be used as an additional tool to classify malignant and benign tumors.Keywords: Breast Cancer, Mammografi, Naive Bayes Classification
Klasifikasi Kasus COVID-19 dan SARS Berbasis Ciri Tekstur Menggunakan Metode Multi-Layer Perceptron Azzahra, Jannatul Firdausa; Sumarti, Heni; Kusuma, Hamdan Hadi
Jurnal Fisika Vol 12, No 1 (2022)
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jf.v12i1.35685

Abstract

Corona Virus Disease 2019 (COVID-19) merupakan penyakit infeksi akut yang disebabkan oleh virus corona sebagai sindrom pernafasan akut parah. SARS (Severe Acute Respiratoty Syndrome) merupakan gangguan saluran pernapasan yang disertai gejala saluran perncernaan disebabkan oleh corona virus. Penelitian ini bertujuan untuk membedakan pasien COVID-19 dan SARS berdasarkan ciri tekstur dengan metode Multi-Layer Perceptron (MLP). Metode yang digunakan dalam penelitain ini terdiri dari tiga tahap, tahap pertama adalah pre-processing, tahap kedua adalah ekstraksi ciri tekstur menggunakan histogram dan GLCM (Gray Level Co-occurrence Matrix), dan tahap ketiga adalah klasifikasi data menggunakan metode Multi-Layer Perceptron (MLP). Hasil penelitian menunjukkan bahwa citra pasien SARS memiliki rerata kecerahan lebih tinggi, memiliki kontras lebih tajam, dan tingkat penyebaran data dalam piksel citra rontgen toraks lebih acak dibandingkan dengan citra pasien COVID-19. Metode yang digunakan dalam penelitian ini menghasilkan akurasi, sensitivitas, dan spesifisitas yang sama, yaitu sebesar 91,67%. Penelitian ini menunjukkan bahwa ciri tekstur mampu membedakan citra rontgen toraks pasien COVID-19 dan SARS secara akurat, sehingga dapat menjadi perangkat tambahan untuk memudahkan tenaga kesehatan.
Development of Chobmons Prototype: Cholesterol and Blood Sugar Level Monitoring System Based on Internet of Things (IoT) using Blynk Application Heni Sumarti; Tria Nurmar’atin; Hamdan Hadi Kusuma; Istikomah Istikomah; Irman Said Prastyo
Jurnal Fisika dan Aplikasinya Vol 18, No 3 (2022)
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat, LPPM-ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24604682.v18i3.12532

Abstract

In the era of the industrial revolution 4.0, we need remote technology and products that d not created new medical waste piles. An unhealthy lifestyle can cause many diseases, either degenerative diseases, namely over rate cholesterol and blood sugar level. High cholesterol and blood sugar levels are causes of major influence on atherosclerosis, stroke, micro-vascular, and cardiovascular complications. We offer a non-invasive cholesterol and blood sugar monitoring device based on red LED and infrared light absorption using the Nellcor DS-100A sensor. This technology can help reduce cumulative medical waste and help health workers to monitor patients remotely. This study used ten random samples to calibrate cholesterol and blood sugar levels. The coefficient of determination values were 0.9580 and 0.9581, respectively, which gave excellent values so that the study is continued by collecting data. Data retrieval use 20 random sample data to measure cholesterol and blood sugar levels, the average accuracy prototype is 90.26% and 91.16%, respectively. It shows great potential in determining estimation value at cholesterol and blood sugar levels. The monitoring system can show the data on the LCD display in Blynk Application with the average time required of 1.07 s.
Pemantau Sinyal Vital untuk Identifikasi Kondisi Tubuh Pasien Covid-19 Menggunakan Sistem Telemedika Berbasis IoT Fina Mushoffa; Heni Sumarti; Edi Daenuri Anwar
Prosiding SNFA (Seminar Nasional Fisika dan Aplikasinya) 2021: Prosiding SNFA (Seminar Nasional Fisika dan Aplikasinya) 2021
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/prosidingsnfa.v5i0.71825

Abstract

Abstract: Covid-19 is a disease that is still a source of concern today. Because of the ease with which Covid-19 is spreading, people must conduct examinations and monitoring of their body conditions. The goal of this study is to make it easier for the general public to monitor temperature, heart rate, and oxygen saturation, which are basic symptom parameters used to determine whether a person is Covid-19 or not. Measuring body temperature determines whether the body has a normal temperature or a fever, measuring heart rate determines whether the heart is beating regularly or not, and measuring oxygen saturation determines whether the body is tired or fit. The accuracy of the temperature measuring device is 99,06%, the accuracy of the heart rate measuring device is 99,6%, and the accuracy of the oxygen saturation measurement device is 99,39%, according to the findings of this study.Abstrak: Covid-19 merupakan suatu jenis penyakit yang masih menjadi kekhawatiran hingga saat ini. Mudahnya penyebaran Covid-19 membuat masyarakat perlu melakukan pemeriksaan hingga pemantauan terkait kondisi tubuh. Penelitian ini bertujuan untuk mempermudah masyarakat dalam memantau suhu, detak jantung, serta saturasi oksigen yang merupakan parameter gejala dasar untuk mengetahui apakah seseorang teridentifikasi Covid-19 atau tidak. Mengukur suhu tubuh membantu mengetahui suhu normal atau demam pada tubuh, mengukur detak jantung dapat mengetahui kondisi jantung berdetak teratur atau tidak, dan mengukur saturasi oksigen dapat membantu untuk mengetahui apakah kondisi tubuh lelah atau bugar. Hasil penelitian ini menunjukkan akurasi alat pengukur suhu sebesar 99,06%, akurasi alat pengukur detak jantung sebesar 99,6% dan akurasi pengukur saturasi oksigen sebesar 99,39%.
Alkukosrat : Pengembangan Alat Ukur Kolesterol dan Asam Urat Secara Non-Invasif Menggunakan Sensor TCRT-5000 Maya Shofani; Firman Hardianto; Heni Sumarti
Prosiding SNFA (Seminar Nasional Fisika dan Aplikasinya) 2021: Prosiding SNFA (Seminar Nasional Fisika dan Aplikasinya) 2021
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/prosidingsnfa.v5i0.71827

Abstract

Abstract: Research has been carried out on the development of a non-invasive cholesterol and uric acid level measuring instrument using TCRT 5000 sensor. The purpose of this research is to create an innovative medical instrument measuring device that is easy, cheap, does not increase the accumulation of medical waste and is not painful (Invasive). The measuring instrument developed by the researcher was named Alkukosrat (Measuring Cholesterol and Uric Acid). Methode of this research is RnD (Research and Development) research through the stage of planning, processing, and testing tool. Testing of the instrument is carried out by measuring cholesterol of 14 sample and uric acid levels of 16 samples of random participants using the invasive method and the non-invasive method. The results of the calibration instrument produce accuracy was qualify the standard of the medical measuring instrument with an accuracy of measuring cholesterol levels of 97,98% and measuring uric acid levels of 95,2%. This research resulted in an innovation of cholesterol and uric acid measuring instruments as an alternative to non-invasively measuring cholesterol and uric acid levels.Abstrak: Telah dilakukan penelitian pengembangan alat ukur kadar kolesterol dan asam urat secara non-invasif dengan menggunakan sensor TCRT 5000. Tujuan dari penelitian ini adalah untuk menciptakan inovasi alat ukur alat kesehatan yang mudah, murah, tidak menambah penumpukan sampah medis dan tidak menyakitkan (non-invasif). Alat ukur yang dikembangkan peneliti bernama Alkukosrat (Alat ukur kolesterol dan asam urat). Metode dalam penelitian ini adalah penelitian RnD (Research and Development) melalui tahap perencanaan, pengolahan, dan pengujian alat. Pengujian instrumen dilakukan dengan mengukur kadar kolesterol dari 14 sampel dan asam urat dari 16 sampel partisipan acak menggunakan metode invasif dan non-invasif. Nilai kalibrasi alat menghasilkan tingkat akurasi data yang memenuhi standar alat ukur medis dengan akurasi pengukuran kadar kolesterol sebesar 97,98% dan pengukuran kadar asam urat 95,2%. Penelitian ini merupakan inovasi alat ukur kolesterol dan asam urat sebagai alternatif pengukuran kadar kolesterol dan asam urat secara non-invasif.
Profil Kadar Gula Darah, Asam Urat dan Kolesterol Warga Beringin Forest Park dengan Metode Non-invasif dan Prinsip Zero Waste Heni Sumarti; Istikomah Istikomah; Affa Ardhi Saputri; Susilawati Susilawati; Fahira Septiani; Alvnia Nabila Tasyakuranti; Qisthi Fariyani
Parta: Jurnal Pengabdian Kepada Masyarakat Vol. 3 No. 2 (2022)
Publisher : Universitas Pendidikan Nasional

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.38043/parta.v3i2.4125

Abstract

Pemeriksaan kesehatan merupakan pemeriksaan yang berfokus pada pencegahan primer dan sekunder, dengan melihat secara holistik berbagai faktor kesehatan yang dapat menyebabkan penyakit tertentu di masa depan. Pemeriksaaan yang dilakukan dengan menggunakan metode non-invasif sesuai dengan salah satu prinsip zero waste yaitu mengurangi limbah medis. Tujuan kegiatan pengabdian ini adalah untuk mendapatkan profil kadar gula darah, kolesterol dan asam urat menggunakan metode non-invasif berbasis prinsip zero waste dan mencegah berbagai resiko penyakit akibat kadar yang melebihi ambang normal. Metode penerapan dalam pengabdian masyarakat ini terdiri dari tiga tahap, yakni persiapan, pelaksanaan dan evaluasi. Persiapan berupa persiapan tempat, alat dan perangkat tambahan. Pelaksanaan berupa penjelasan alat dan pemeriksaan kesehatan. Evaluasi berupa wawancara dengan warga terkait kesan saat menggunakan alat dan feedback terkait hasil pemeriksaan. Hasil pemeriksaan kesehatan pada 29 warga menunjukkan rata-rata profil kadar gula darah 148.93 mg/dl, kadar kolesterol 102.24 mg/dl, dan kadar asam urat 3.17 mg/dl. Hal ini menunjukan bahwa rata-rata kadar gula darah sedikit di atas ambang normal, sedangkan kadar kolesterol dan asam urat berada pada ambang normal. Warga merasa sangat nyaman dengan pemeriksaan non-invasif karena tidak perlu melukai jari untuk mengambil sampel.
Utilizing Appropriate Technology for Non-Invasive Examination of Blood Sugar, Cholesterol, and Uric Acid Levels Alvania Nabila Tasyakuranti; Fahira Septiani; Heni Sumarti; Istikomah Istikomah; Qisthi Fariyani; Sheilla Rully Anggita; Affa Ardhi Saputri; Susilawati Susilawati; Irman Said Prastyo; Hartono Hartono; Fachrizal Rian Pratama
Madani: Jurnal Pengabdian Masyarakat dan Kewirausahaan Vol 1 No 4 (2023): Juli 2023
Publisher : LPPM Universitas Internasional Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37253/madani.v1i4.7619

Abstract

High blood sugar, cholesterol and uric acid are non-communicable diseases and are one of the causes of death in the world. Generally, this disease is very susceptible to be suffered by the elderly. One of the tests to monitor blood sugar, cholesterol, and uric acid levels is with an invasive disposable test kit. This method is inefficient because it causes the risk of infection, increases medical waste and is quite expensive. Real work students from Walisongo State Islamic University Semarang group 53 held a free examination in Krandon Village as an effort to carry out community service through appropriate technology in the health sector. Examination tools are made by lecturers and students using non-invasive methods (without injuring the body). Based on the results of student interviews with the community and health workers, this work program received a good response because the examination did not cause pain and helped reduce medical waste in the environment.
Mini Research: Analyzing the Relationship between Listening to Murottal Al Qur’an Surah Al Baqarah Verses 1-10 to Beta Waves with Learning Concentration Heni Sumarti; Muhammad Syafiul Huda; Fahira Septiani; Affa Ardhi Saputri; Arifah Riana
Jurnal Fisika dan Aplikasinya Vol 19, No 2 (2023)
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat, LPPM-ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24604682.v19i2.16145

Abstract

Concentration in learning has a big impact on determining learning outcomes. Some of the conditions experienced by students who find it difficult to maintain concentration during the learning process are caused by many factors. Among them is the atmosphere of a noisy learning environment. One way to determine the learning concentration condition is by measuring beta brain waves using Electroencephalography (EEG). This study aims to analyze the effect of the murottal stimulus of Al Baqarah verses 1-10 on beta brain wave activity and its relationship with learning concentration. The research method used is experimental. Subjects in this study were 6 students of UIN Walisongo Semarang, with inclusion criteria ranging from 20-23 years old, Muslim, not hearing impaired, physically and mentally healthy, and not using drugs. The stages of research consisted of 4 stages; first, the research subjects carried out the pre-test without stimulus; second subject measured their brain waves without stimulus; third, subjects measured brain waves with stimulus; and finally, the research subjects carried out the pre-test with stimulus. The analysis results using the T-test, which stated that the average comparison of beta brain waves in the two groups before and after being given the murottal Al-Qur’an stimulus showed a p-value of 0.0003 (p<0.05). While the results of the pre-test and post-test T-test showed a p-value of 0.017 (p<0.05). It shows that the murottal stimulus of Al Baqarah verses 1-10 effects changes in beta waves and the level of learning concentration.
SCALAR INTERACTIONS IN THE MODIFIED LEFT-RIGHT SYMMETRY MODEL Istikomah Istikomah; Nurul Embun Isnawati; Heni Sumarti; Sheilla Rully Anggita
Jurnal Neutrino:Jurnal Fisika dan Aplikasinya Vol 16, No 1 (2023): October
Publisher : Universitas Islam Negeri Maulana Malik Ibrahim Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/neu.v16i1.20518

Abstract

The Standard Model is a model of particle physics in which one Higgs particle has been confirmed with a mass of 126 GeV. In 2016 some discoveries made it possible to have other scalar particles similar to the Higgs. The modified left-right symmetric model extends the standard model with an expanded scalar sector. There are ϕ_L and Δ_L left sector scalar particles, ϕ_L and Δ_L right sector scalar particles and two singlet η and ξ scalar particles. Therefore, this research objective is to analyze of the possibility of a Higgs interaction with other scalar particles. The method of this research is using a Feynman diagram to describe the interaction terms at the Higgs Potential. The interaction probability is sought using the Feynman rule for Toy Theory. The decay rate uses the Golden Rule. When the universe's temperature reaches the mass of η, the scalar becomes non-relativistic and decays into ϕ_L and ϕ_R. The scalar ξ is scattered into ϕ_L through the η scalar propagator and into ϕ_R. The scalars Δ_L and Δ_R do not decay, they only scatter into ϕ_L and ϕ_R. The η and ξ scalars have transformed into ϕ_L in the left sector and ϕ_R in the right sector, and only ϕ_L in the sectors are likely to be detected as the Higgs Standard Model.
Klasifikasi tumor payudara jinak dan ganas pada citra ultrasonografi (USG) berdasarkan karakteristik tekstur menggunakan metode random forest Rahmawati, Aida; Sari, Ice Uliya; Sumarti, Heni
Jurnal Teras Fisika: Teori, Modeling, dan Aplikasi Fisika Vol 7 No 1 (2024): Jurnal Teras Fisika: Teori, Modeling, dan Aplikasi Fisika
Publisher : Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jtf.2024.7.1.10997

Abstract

The incidence of breast cancer is steadily increasing each year in Indonesia. Currently, breast cancer is not only prevalent in the elderly population but also among younger individuals. Several studies indicate that breast cancer classification can be performed using ultrasonography. The aim of this research is to explore the use of the Random Forest method for classifying breast tumors in ultrasonography images based on texture characteristics. Although the model achieved 100% accuracy on the training data, testing with various folds showed a decrease in accuracy ranging from 51% to 54%, with varying precision and recall. Despite not being optimal, Random Forest demonstrates potential as a classification algorithm, providing a foundation for further development to enhance the accuracy of breast tumor diagnosis. Factors such as feature selection, dataset quality, and model parameters are crucial considerations for future research to support more accurate diagnoses by healthcare professionals.