Claim Missing Document
Check
Articles

Found 38 Documents
Search

Making AI Work for Government: Critical Success Factor Analysis Using R-SWARA Brillianto, Bramanti; Ruldeviyani, Yova; Sidiq, Darmawan
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 8 No 3 (2024): June 2024
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v8i3.5813

Abstract

This study quantifies what makes Artificial Intelligence (AI) work for government, the critical success factors (CSFs) for successful AI implementation within the Directorate General of Taxes (DGT). Analyzing factors such as technology, organization, process, and environment, the research highlights the importance of organizational readiness, strategic vision, and leadership support to drive successful AI integration within DGT. The dimension of the organization became the most critical factor, followed by technology, process, and environment. The findings offer actionable insights for DGT's decision-making processes, aiding in strategic resource allocation and tailored AI strategy refinement. Furthermore, this research is a valuable reference for other public sector organizations that aim to enhance operational efficiency through the adoption of AI. This study empowers decision makers within the DGT and the wider public sector by providing nuanced information on the critical factors that influence the successful implementation of AI, fostering improved operational efficiency and governance practices.
Evaluasi Kualitas Data Pada Daftar Produk Tayang Di Katalog Elektronik Versi 6.0 Pratiwi, Aprilia; Mahsa Elvina Rahmawyanet; Amanda Ghaisani; Tri Broto Siswoyo; Yova Ruldeviyani; Yudho Giri Sucahyo
The Indonesian Journal of Computer Science Vol. 14 No. 3 (2025): The Indonesian Journal of Computer Science
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v14i3.4858

Abstract

Data quality is important aspect in supporting transparency, accountability, and efficiency of the government procurement process. Electronic Catalog data acts as a source of information on products, services, and providers of goods/services. The transition from Electronic Catalog v5 to v6 is form of digital transformation in the government procurement of goods/services as form of improving public services. Measuring the quality of Electronic Catalog v6 data has significant role in providing effective, efficient and accountable information. This study aims to evaluate the quality of data on Electronic Catalog v6 product data using the Total Data Quality Management (TDQM) framework. There are 6 dimensions used in evaluating data quality, completeness, accuracy, data integrity, fairness, consistency, and precision. The results of the study show that the dimensions of consistency, accuracy, completeness, fairness and precision reach above 90% while data integrity reaches below 50% and requires improvement on product data quality.
Peningkatan Manajemen Data Master Rekam Medis Elektronik Rumah Sakit: Studi Kasus di Rumah Sakit XYZ Setyo Nugroho, Aloysius Prastowo; Ruldeviyani, Yova
Jurnal Pendidikan Indonesia Vol. 6 No. 7 (2025): Jurnal Pendidikan Indonesia
Publisher : Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59141/japendi.v6i7.8375

Abstract

Rumah Sakit XYZ memiliki sistem elektronik berupa Electronic Medical Record (ERM). Permasalahan yang dihadapi pada ERM rumah sakit adalah kurangnya standar data master ditunjukkan dengan pengecekan manual dependensi dan relasi database tiap perubahan aplikasi. Untuk menanganinya perlu diketahui tingkat maturitas saat ini guna mengetahui potensi masalah, dan proses internal yang dapat dioptimalkan. Frame work md3m Penelitian ini dipilih Master Data Management Maturity Model (MD3M) oleh Spruit-Pietzka karena metode ini berfokus pada lima bidang penting dan tiga belas area yang sesuai dengan kebutuhan penilaian Data Master ERM dan secara praktis dirancang untuk mengukur kematangan manajemen data master. Tujuan dari penelitian ini adalah untuk meningkatkan pengelolaan master data rekam medis yang sesuai bagi rumah sakit XYZ. Hasil pengukuran menunjukkan tingkat maturitas keseluruhan adalah 3, dengan rincian 87% kapabilitas sudah terpenuhi atau terpenuhi 55 kapabilitas dari total 63 kapabilitas yang diukur. Hal ini menunjukkan bahwa organisasi sudah memiliki kolaborasi pertama terjadi pada tingkat taktis memiliki kesadaran untuk adanya inisiatif lain dalam pengelolaan master data ERM rumah sakit. Pentingnya melakukan peninjauan kembali model master data untuk konsisten dan mengurangi redundansi data dan menerapkan Stewardship guna melakukan proses teknis serta memelihara dan mengupdate repositori data.
Pengukuran Tingkat Kapabilitas Sistem Pengolahan Data Survei Pada Manajamen Kinerja Dan Manajemen Data Operasi Menggunakan Dmbok Dan Cobit2019 Di BPS RI Wintang, Siti Mawar Rini; Ruldeviyani, Yova; Parmiyanto, Joko; Putra Hulu, Freddy Richard; Putri, Azanisa; Sulistiyo, Rifta Dimas
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 10 No 3: Juni 2023
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2023106533

Abstract

BPS telah membangun salah satu sistem pengolahan data survei yang disebut Integrated Collection System (ICS) dalam upaya melakukan transformasi digital. ICS merupakan sistem untuk mengumpulkan data multimetode yang terdiri dari Pen and Paper Interviewing (PAPI), Computer Assisted Personal Interviewing (CAPI), Computer Assisted Web Interviewing (CAWI), dan Acquisition of Administrative Data. Sistem ini mereformasi cara BPS mengumpulkan data menggunakan berbagai teknologi dan mengintegrasikan data. Sejak diinisiasi tahun 2019, penggunaan ICS semakin bertambah sejalan dengan meningkatnya kebutuhan data yang cepat dan akurat. Untuk menyukseskan transformasi digital, ICS diharapkan memiliki kemampuan manajemen kinerja dan operasi data yang baik maka penelitian ini mengakomodir untuk mengukur tingkat kapabilitas pada ICS dengan proses yang spesifik tersebut. Penelitian ini menggunakan acuan framework dari COBIT 2019, DMBoK dan CMMI. Dari hasil penelitian menunjukkan tingkat manajemen kinerja dari 5 sub domain area, yaitu MEA.01.01-MEA.01.05 masih berada pada tingkat 1, sedangkan hasil penelitian tingkat manajemen operasi data didapatkan bahwa 2 PA (practice areas) berada di level 1, 8 PA berada di level 2, dan 5 PA berada pada level 3. Rekomendasi disusun untuk mengoptimalkan tingkat kapabilitas pada manajemen kinerja dan manajemen operasi data pada ICS sehingga ICS dapat dijalankan dengan baik sesuai dengan target transformasi digital BPS. AbstractAs an effort to carry out digital transformation, BPS has built one of the survey data processing systems known as Integrated Collection System (ICS). ICS is a system for multimode data collection through Pen and Paper Interviewing (PAPI), Computer Assisted Personal Interviewing (CAPI), Computer Assisted Web Interviewing (CAWI), and Acquisition of Administrative Data. ICS reforms the way BPS collects and integrates data using various technologies. Since its initiation in 2019, the use of ICS has increased. With the increasing demand for data, a system that can produce fast and accurate data is extremely necessary. To achieve the goals of digital transformation through the implementation of ICS, it is crucial to have good performance and data operations managements. Therefore, this study accommodates to measure the Capability Level of ICS with these specific processes by applying the frameworks from COBIT 2019, DMBoK, and CMMI as references. From the Performance Management measurement, it was found that the 5 sub-domain areas (MEA.01.01-MEA.01.05) were still at Level 1. Furthermore, the Data Operations Management measurement showed that 2 PA (Practice Areas) were at Level 1, 8 PA were at Level 2, and 5 PA were at Level 3. Based on the results of this study, recommendations have been made to optimize the Capability Level in both Performance Management and Data Operations Management of ICS so that it can be run properly in accordance with the goals of digital transformation of BPS.
Optimizing User Satisfaction: A Comprehensive Evaluation of the Info BMKG App Using UEQ+ and IPA Methods Ariyanto, Bima Tri; Ruldeviyani, Yova; Dharmawan, GS Budhi; Bahar, Maharani IF
International Journal of Engineering Continuity Vol. 3 No. 1 (2024): ijec
Publisher : Sultan Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58291/ijec.v3i1.242

Abstract

An update to the appearance of the BMKG Info app in November 2022 led to a 0.26 drop in the monthly rating, suggesting that the change may not have met users' expectations. This study aims to identify the cause of the rating drop through a user experience (UX) assessment involving 1,237 app users. Using the User Experience Questionnaire Plus (UEQ+) and Importance Performance Analysis (IPA), this study collected and analyzed user feedback related to five aspects of UX: efficiency, novelty, usability, trust in content, and clarity. IPA results show that efficiency is a highly important but underperforming aspect, indicating that interface updates reduce efficiency and negatively impact user satisfaction. Recommendations include prioritizing efficiency improvements, usability evaluations, collecting additional feedback, and using IPA data to drive improvement priorities. The findings of this study contribute to the field of science by demonstrating the importance of a comprehensive UX analysis for updated apps. For future research, it is recommended to conduct longitudinal studies to monitor changes in user satisfaction over time and explore innovative methods to improve the overall user experience.
A Practical Approach to Enhance Data Quality Management in Government: Case Study of Indonesian Customs and Excise Office Nugraha, Tito Febrian; Wibowo, Wahyu Setiawan; Genia, Venera; Fadhil, Ahmad; Ruldeviyani, Yova
Journal of Information Systems Engineering and Business Intelligence Vol. 10 No. 1 (2024): February
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20473/jisebi.10.1.51-69

Abstract

Background: The exponential data growth emphasises the importance of efficient information flow in organisations, especially in the financial sector. Data quality significantly influences decision-making, necessitating reliable Data Quality Management (DQM) frameworks. Previous studies propose DQM to maintain data quality through regulation, technology, measurement, evaluation, and improvement. Researchers highlight high-quality data benefits in private organisations but note the lack of improvement in data utilisation in public organisations. In Indonesia, data accuracy and quality are crucial for financial policies, with frequent reports of data inaccuracies in the Directorate General of Customs and Excise (DJBC), demanding standardised DQM practices. However, However, prior studies have yet to provide comprehensive and practical solutions to improve DQM practices. This study therefore aims to measure the DQM maturity, provide recommendations based on best practices, and formulate a practical strategy for improvements along with indicators tailored to the organisation, a topic that previous research has not explored. Methods: This study falls under a mixed method approach (a quantitative study followed by a qualitative study) and employs a three-stage methodology. The authors conduct maturity assessment using Loshin model through an assisted enumeration from 5 key stakeholders followed by recommendations based on the Data Management Body of Knowledge (DMBOK) and strategy formulation from internal documents and interview. Results: The data analysis yielded a DQM maturity score of 3.10, indicating a "defined to managed" level of maturity. Among eight components, only one receives a Managed level, two components are in the Defined level and the rest belongs to a Repeatable level. This study also proposes three strategies to bolster DQM by targeting 49 weak points, which will be progressively and sequentially implemented over a three-year period, using twelve possible solutions. Conclusion: The study highlights the importance of efficient data flow, particularly in the financial sector, and suggests DQM for maintaining data quality. DJBC's import DQM level is assessed using Loshin's measurements, revealing areas for improvement through key DMBOK activities. Recommendations include data governance, strategic planning, and sequential DQM implementation. The study concludes by formulating a practical approach to be applied in a three-year span with ten indicators to measure success.   Keywords: Data Quality Management, Data Quality Maturity Model, Data Quality Strategy, Loshin, DMBOK
Peningkatan Manajemen Data Master Rekam Medis Elektronik Rumah Sakit: Studi Kasus di Rumah Sakit XYZ Setyo Nugroho, Aloysius Prastowo; Ruldeviyani, Yova
Jurnal Pendidikan Indonesia Vol. 6 No. 7 (2025): Jurnal Pendidikan Indonesia
Publisher : Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59141/japendi.v6i7.8375

Abstract

Rumah Sakit XYZ memiliki sistem elektronik berupa Electronic Medical Record (ERM). Permasalahan yang dihadapi pada ERM rumah sakit adalah kurangnya standar data master ditunjukkan dengan pengecekan manual dependensi dan relasi database tiap perubahan aplikasi. Untuk menanganinya perlu diketahui tingkat maturitas saat ini guna mengetahui potensi masalah, dan proses internal yang dapat dioptimalkan. Frame work md3m Penelitian ini dipilih Master Data Management Maturity Model (MD3M) oleh Spruit-Pietzka karena metode ini berfokus pada lima bidang penting dan tiga belas area yang sesuai dengan kebutuhan penilaian Data Master ERM dan secara praktis dirancang untuk mengukur kematangan manajemen data master. Tujuan dari penelitian ini adalah untuk meningkatkan pengelolaan master data rekam medis yang sesuai bagi rumah sakit XYZ. Hasil pengukuran menunjukkan tingkat maturitas keseluruhan adalah 3, dengan rincian 87% kapabilitas sudah terpenuhi atau terpenuhi 55 kapabilitas dari total 63 kapabilitas yang diukur. Hal ini menunjukkan bahwa organisasi sudah memiliki kolaborasi pertama terjadi pada tingkat taktis memiliki kesadaran untuk adanya inisiatif lain dalam pengelolaan master data ERM rumah sakit. Pentingnya melakukan peninjauan kembali model master data untuk konsisten dan mengurangi redundansi data dan menerapkan Stewardship guna melakukan proses teknis serta memelihara dan mengupdate repositori data.
The Maturity Model of Data Quality Management in Banking Industry: PT XYZ Core System Customer Data Mulyadi, Rahmad; Ruldeviyani, Yova; Alfiany, Noverina; Hidayanto, Achmad Nizar
Jurnal Komtika (Komputasi dan Informatika) Vol 7 No 1 (2023)
Publisher : Universitas Muhammadiyah Magelang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/komtika.v7i1.8750

Abstract

PT XYZ, engaged in the financial industry, has a target to become a leading company in Southeast Asia and has been supported by more than 200 million customer data in its core system. This huge amount of data is expected to create business opportunities, build a risk-aware culture, and increase supremacy in the business strategy of PT XYZ. These things can be achieved if the data used is of good quality data. In fact, found anomalies in a large number of customer data. To get recommendations for improving the quality of customer data, it is necessary to assess the quality of customer data. The customer data quality assessment in this study uses the method introduced by Loshin (2011). Loshin’s Data Quality Management Model (DQMM) adopts a capability maturity level model in building its characteristic matrix. Maturity levels obtained are 3.6 (expectations), 3.6 (dimensions), 4.4 (policy), 3.8 (procedures), 4.2 (governance), 3.8 (standardization), 4, 2 (technology), and 3.8 (performance management). Regarding the expectation that senior management can achieve the highest level of data quality, 9 strategic recommendations were produced 9 strategy recommendations were submitted to PT XYZ is the result of mapping between criteria that have not been met with data quality management activity in Data Management Body of Knowledge (DMBOK) version 2.0. Measurement and monitoring of good data quality is the most influential recommendation for PT XYZ.
Co-Authors Achmad Nizar Hidayanto Adi Gunawan, Adi Afif Gunung , Muhammad Ahmad Fadhil, Ahmad Ahmad Hendra Maulana Ahmad Syaifulloh Imron Al Adawiyah, Rabiah Al Haq, Muhammad Hezby Al Qahar, Muhammad Yazid Aldiansah Prayogi Alfiandi, Rama Alfiany, Noverina Aloysius Prastowo Setyo Nugroho Amanda Ghaisani Andro Harjanto Arif Hidayat Aris Budi Santoso Ariyanto, Bima Tri Astagina, Shania Eriadhani Azis Amirulbahar Bahar, Maharani IF Brillianto, Bramanti Desiana Nurul Maftuhah Devina, Fakhira Dharmawan, GS Budhi Faris Salbari Fathurahman Ma'ruf Hudoarma Fidyawan, Miftahul Agtamas Fitriya, Ghina Genia, Venera Hafiz , Muhammad Halida Ernita Handayani, Putu Wuri Hendry, Darell Hizqil, Ahmad I Made Kurniawan Putra Ines Dwi Andini Jeri Apriansyah Pagua, Jeri Apriansyah Juliansyah, Mohamad Denis Khairunnas, Rezki Khairunnaziri, Muhammad Krisna Maria Rosita Dewi Kurniawati, Monica Vivi Layungsari Layungsari Layungsari Layungsari Layungsari Layungsari Lelianto Eko Pradana Lia Ellyanti Mahsa Elvina Rahmawyanet Melani Puspasari, Hasna Muhammad Farhan Mukharomah, Ulfah Nur Nabasya, Oristania Wahyu Noverina Alfiany Nugraha, Tito Febrian Nugraheni, Sani Parmiyanto, Joko Prastowo, Rahardito Dio Pratiwi, Aprilia Priastomo, Ristyo Yogi Prisillia, Galuh Puja Putri Abdullah Purwandaru, Dhanang Putra Hulu, Freddy Richard Putra, Ramadhoni Putri, Azanisa Rahmad Mulyadi Rahmad Mulyadi, Rahmad Rahman, Henry Aulia Rahmi Julianasari Raksaka Indra Alhaqq Ramayuda, Muhammad Davin Ratna Yulika Go Rina Rahmawati Sidiq, Darmawan Sudarwono, Dianto Adwoko Sulaeman, Achmad Firmansyah Sulistiyo, Rifta Dimas Syalevi, Rahmad Tri Broto Siswoyo Tri Utami, Avita Utami, Aisyah Nurlita Wibowo, Wahyu Setiawan Widoyono, Bambang Wintang, Siti Mawar Rini Yoga Pamungkas Yudho Giri Sucahyo Yudho Giri Sucahyo Yudistira, Ricko Dwiki Yuli Astuti Zharif Mustaqim, Ilham Zulmy, Mohamad Faisal