Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : International Journal of Applied Power Engineering (IJAPE)

Analysis of the effect of a microcontroller-based solar panel cooling system on temperature and power output Vicky Andria Kusuma; Happy Aprillia; Sena Sukmananda Suprapto; Muhammad Nizhom Ramadhani; Aji Akbar Firdaus; Dimas Fajar Uman Putra
International Journal of Applied Power Engineering (IJAPE) Vol 12, No 2: June 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijape.v12.i2.pp119-125

Abstract

This research addresses the problem of temperature fluctuations affecting the efficiency of solar panels. A cooling system has been developed using a Peltier and a combination of air- and water-cooling methods. The air-cooling system involves placing a Peltier coated with a heatsink under the solar panel, while the water-cooling system uses pumped water on the panel's surface. The study aims to design a solar panel cooling system to reduce temperature and power losses and compare its output to standard solar panels. The system includes a Peltier, DC fan, and heatsink. Results indicate that the air-cooling system reduced temperature losses on the bottom milk of solar panels by 14.5%. However, the surface of solar panels showed no reduction in temperature losses. Additionally, solar panels with cooling systems were able to reduce power losses by 4% compared to standard solar panels. This research suggests that the use of an air-cooling system utilizing Peltier as the cooling medium could be a potential solution to reduce temperature losses and power losses on solar panels.
Leveraging PSO algorithms to achieve optimal stand-alone microgrid performance with a focus on battery lifetime Vicky Andria Kusuma; Aji Akbar Firdaus; Sena Sukmananda Suprapto; Dimas Fajar Uman Putra; Yuli Prasetyo; Firillia Filliana
International Journal of Applied Power Engineering (IJAPE) Vol 12, No 3: September 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijape.v12.i3.pp293-299

Abstract

This research endeavors to increase the lifespan of a battery utilized in a standalone microgrid system, a self-sufficient electrical system that consists of multiple generators that are not connected to the main power grid. This type of system is ideal for use in remote locations or areas where the grid connection is not possible. The sources of energy for this system include photovoltaic panels, wind turbines, diesel generators, and batteries. The state of charge (SOC) of the battery is used to determine the amount of energy stored in it. The particle swarm optimization (PSO) method is applied to minimize energy generation costs and maximize battery life. The results show that battery optimization can decrease energy generation costs from Rp 5,271,523.03 ($338.64 in USD) to Rp 13,064,979.20 ($839.30 in USD) while increasing the battery's lifespan by 0.42%, with losses of 7.22 kW and 433.29 kVAR, and also a life loss cost of Rp 5,499/$0.35.
Comparative analysis of single-axis solar tracker performance with and without reflector under various weather conditions Kusuma, Vicky Andria; Firdaus, Aji Akbar; Suprapto, Sena Sukmananda; Yuniar, Risty Jayanti; Trimulya, Hanif; Priyanto, Yun Tonce Kusuma
International Journal of Applied Power Engineering (IJAPE) Vol 13, No 2: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijape.v13.i2.pp328-334

Abstract

This research explores a sun tracking system for solar panels that affects the power output of the panels. To address this, a unidirectional sun tracking system is implemented to ensure the solar panels are perpendicular to the sun, thus optimizing solar radiation. Additionally, reflectors are integrated to capture more sunlight. This research aims to design the system of unidirectional sun tracking to enhance the power output generated by solar panels and compare its performance with stationary (static) solar panels. The results demonstrate that the system of sun tracking improves the power output of solar panels. However, when reflectors are used in conjunction with the sun tracking system, no significant increase in power output is observed. Moreover, solar panels equipped with the unidirectional sun tracking system exhibit a power increase of 52.06 Watts compared to stationary solar panels. This research indicates that employing a unidirectional sun tracking system with the addition of reflectors does not enhance power output but instead reduces it due to the increased temperature effect caused by the sunlight reflection from the added reflectors.