Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Sciencestatistics: Journal of Statistics, Probability, and Its Application

Partial Derivatives of Gompertz, Logistic, and Weibull Non-Linear Growth Models on Confirmed COVID-19 Cases Utami Dewi, Wardhani; Warsono
Sciencestatistics: Journal of Statistics, Probability, and Its Application Vol. 2 No. 1 (2024): JANUARY
Publisher : Universitas Muhammadiyah Metro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24127/sciencestatistics.v2i1.5641

Abstract

. The epidemiological picture of COVID-19 is still unknown, and the number of confirmed cases of COVID-19 varies every day. Researchers have studied COVID-19 a lot, and many of them have used statistical models to estimate the growth of the outbreak. Non-linear statistical models can be used to describe growth behavior, as it varies in time. The aim of this research is to analyze, compare, and find the best model from the Gompertz, Logistic, and Weibull non-linear models. Daily cumulative data on confirmed COVID-19 viruses in Indonesia for 2020-2021 will be used in this research. The results obtained by the Logistic model proved to be very effective in describing the COVID-19 epidemic curve and estimating epidemiological parameters. The Logistic Model provides the best results compared to other growth models applied by Gompertz and Weibull. The R-Square of the logistic model is 0.9990, meaning that the model is able to explain or predict 99.90% of the data and 0.10% is explained by other factors. However, this research cannot explain the turning point of the curve, because there are many factors other than the model. One of them is the nature of the virus carrier from one place to another, then the behavior of the carrier who has not fully implemented the health protocol rules.