Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal of Artificial Intelligence and Engineering Applications (JAIEA)

K-Means Algorithm to Improve Leaf Image Clustering Model for Rice Disease Early Detection Gina Regiana; Irma Purnamasari, Ade; Bahtiar, Agus; Tohidi, Edi
Journal of Artificial Intelligence and Engineering Applications (JAIEA) Vol. 4 No. 2 (2025): February 2025
Publisher : Yayasan Kita Menulis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59934/jaiea.v4i2.840

Abstract

This research aims to improve the accuracy of rice leaf image clustering in early disease detection using the K-Means algorithm. The approach used involves the Knowledge Discovery in Databases (KDD) method, which includes data selection, pre-processing, data transformation, data mining, evaluation, and presentation of results. The dataset used consists of images of healthy leaves and leaves infected with diseases such as Bacterial Leaf Blight, Brown Spot, and Leaf Smut. The images are processed through grayscale conversion, noise removal, size adjustment, and data augmentation. The K-Means algorithm is applied to cluster image features based on visual similarity. Evaluation results using Silhouette Score showed that the best clustering was obtained at K=2 with a score of 0.8340, resulting in two main clusters separating healthy and infected images. This study concludes that the K-Means algorithm is able to improve the efficiency and accuracy of rice disease detection, so that it can assist farmers in taking early preventive measures and increase agricultural productivity. This implementation shows significant potential in the development of smart agriculture technology.
Improving the Education Development Contribution Payment Model at SMK Istiqomah Maruyung Using the C4.5 Algorithm Noviyanti; Purnamasari, Ade Irma; Bahtiar, Agus; Tohidi, Edi
Journal of Artificial Intelligence and Engineering Applications (JAIEA) Vol. 4 No. 3 (2025): June 2025
Publisher : Yayasan Kita Menulis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59934/jaiea.v4i3.729

Abstract

  Payment of tuition fees is one of the important aspects of school financial management. At SMK Istiqomah Maruyung, the management of SPP payments is still done manually, which causes student non-compliance in paying on time. The purpose of the research is to improve the SPP payment model by using the C4.5 algorithm to classify the level of student compliance and identify the main factors that influence late payments. The method used is the Knowledge Discovery in Databases (KDD) approach which includes the stages of data selection, preprocessing, transformation, data mining, and result evaluation. The research data was taken from 206 students in the 2023/2024 academic year with attributes such as parental income, number of siblings, scholarship status, and academic grade point average. The C4.5 algorithm was applied to build a decision tree model, with evaluation using five-fold cross validation. The result of this study is that the C4.5 algorithm is able to classify student compliance levels with an average accuracy of 93.55%. The main factors that influence late payment are academic grade point average, class, and parental income. Although the model is very good at predicting compliant students (precision 95%, recall 98%), it shows weakness in predicting lateness (precision 67%, recall 40%). It is concluded that the C4.5 algorithm can improve the efficiency of managing tuition payments and provide data-driven insights for policy making. With further implementation, this algorithm is expected to be adopted by other educational institutions to address similar challenges in financial management.