Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Automotive Experiences

The Effects of Rice Husk Particles Size as A Reinforcement Component on Resin-Based Brake Pad Performance: From Literature Review on the Use of Agricultural Waste as A Reinforcement Material, Chemical Polymerization Reaction of Epoxy Resin, to Experiments Asep Bayu Dani Nandiyanto; Siti Nur Hofifah; Gabriela Chelvina Santiuly Girsang; Silmi Ridwan Putri; Bentang Arief Budiman; Farid Triawan; Abdulkareem Sh. Mahdi Al-Obaidi
Automotive Experiences Vol 4 No 2 (2021)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1287.118 KB) | DOI: 10.31603/ae.4815

Abstract

This study aims to investigate the effect of rice husks’ particle size on resin-based brake pad performance (i.e. compressive strength, puncture strength, mass loss, wear rate, friction coefficient, and heat resistance). Bisphenol A-epichlorohydrin and cycloaliphatic amine were mixed to form resin and used as the brake pad's base material. In the experiment, rice husk with a specific particle size (i.e., 250, 500, dan 1000 μm) was added to the resin. Rice husk has received considerable interest due to its lignin, cellulose, and silica content, making it suitable as friction material due to its ceramic-like behavior. The experimental results showed small rice husk particles improved compressive strength, puncture strength, and bulk density. This can be obtained from the analysis of the maximum compressive strength for brake pad supported by particles with sizes of 250, 500, and 1000 μm having values of 0.238; 0.173; and 0.144 MPa, respectively. In contrast, large particles formed coarse surfaces and pores, decreased mass loss rate, and improve friction properties (i.e. wear rate, friction coefficient). The friction coefficient values of brake pad supported by particles with sizes of 250, 500, and 1000 µm were, respectively, 0.2075; 0.2070; and 0.3379. Particle size affected interpacking, interfacial bonding, pores number and size, thermal softening, mechanical properties, and friction properties of the brake pad. Comparison between the prepared resin-based and commercial brake pad was also done, confirming the utilization of agro-waste as a potential alternative for friction material in the brake pad.
Rollover Stability Analysis and Layout Optimization of a Delta E-trike Fitri Endrasari; Djati Wibowo Djamari; Bentang Arief Budiman; Farid Triawan
Automotive Experiences Vol 5 No 2 (2022)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1286.65 KB) | DOI: 10.31603/ae.6136

Abstract

This study derives a rollover index for a delta E-trike. Past works derive the rollover index by considering lateral centrifugal force only. In contrast, this study proposes a rollover index which is derived under the assumption that the centrifugal force act in both lateral and longitudinal direction. This assumption will give a result closer to the real-life application. In addition, a parametric study on the effect of center of gravity location on rollover index is also proposed. The study continued with the layout assessment, which is done as the considerations in rearranging the powertrain components inside the E-trike. The comparison between initial and new layout shows that the new arrangement gives several advantages to the delta E-trike.
Electric Delta Trike Stability Characteristic and Maneuverability Analysis: Experiment and Multi-Body Dynamic Simulation Ignatius Pulung Nurprasetio; Robby Dwianto Widyantara; Bentang Arief Budiman; Rakshidatu Lestaluhu; Djati Wibowo Djamari; Farid Triawan; Muhammad Aziz
Automotive Experiences Vol 5 No 3 (2022)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.7070

Abstract

This paper reveals the stability characteristics of an electric-powered delta trike (e-trike), which is developed for goods delivery services. The changeable center of gravity position and weight due to electric component placement and the carried good weight can cause instability of the e-trike. Three main parameters are firstly evaluated on the e-trike: 1) geometry, 2) center of gravity, and 3) stiffness and damping coefficient of the suspensions. Single Lane-Change (SLC) and Double Lane-Change (DLC) tests were then conducted following ISO 14791:2000 and ISO 3888-1:2018 standards, respectively. An e-trike model was created and simulated using SIMPACK, a multi-body dynamic software. The simulation results showed that the developed e-trike model can replicate SLC and DLC tests, indicating the model was valid. A parametric study with the validated model was then conducted with various e-trike weights, center of gravity position, and suspension stiffness and damping ratio values. The results showed additional weight and higher center of gravity position can decrease threshold velocity to avoid rollover. The low suspension stiffness also contributed to lower the threshold velocity. However, the damping coefficient value did not change the threshold velocity significantly. These results can be a guideline in designing a delta trike with better performance in stability and maneuverability.