Claim Missing Document
Check
Articles

Found 37 Documents
Search

Video Annomaly Classification Using Convolutional Neural Network Rachmatullah, Muhammad Naufal; Sutarno, Sutarno; Isnanto, Rahmat Fadli
Computer Engineering and Applications Journal Vol 13 No 1 (2024)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18495/comengapp.v13i1.468

Abstract

The use of surveillance videos is increasingly popular in city monitoring systems. Generally, the analysis process in surveillance videos still relies on conventional methods. This method requires professional personnel to constantly monitor and analyze videos to identify abnormal events. Consequently, the conventional approach is time-consuming, resource-intensive, and costly. Therefore, a system is needed to automatically detect video anomalies, reducing the massive human resource utilization for video monitoring. This research employs deep learning methods to classify anomalies in videos. The video anomaly detection process involves transforming the video into image format by extracting each frame present in the video. Subsequently, a Convolutional Neural Network (CNN) model is utilized to classify anomalous events within the video. Testing results using the CNN architectures DenseNet121 and EfficientNet V2 yielded performance accuracies of 99.89 and 98.24, respectively. The testing results indicate that the DenseNet121 architecture outperforms the EfficientNetV2 architecture in terms of performance.
Keyphrase Extraction Using TextRank for Indonesian Text Muhammad, Fadel; Yusliani, Novi; Rachmatullah, Muhammad Naufal
Sriwijaya Journal of Informatics and Applications Vol 5, No 1 (2024)
Publisher : Fakultas Ilmu Komputer Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36706/sjia.v5i1.62

Abstract

Keywords are commonly used as a form of summary from scientific publications. But in determining keywords, it requires expertise in the related field and a long amount of time because you have to read and understand the entire contents of scientific publications. Keyphrase Extraction can be a solution to get relevant keywords in a short time based on titles and abstracts from scientific publications. TextRank method is used to extract keywords. This research will perform keyword extraction using the TextRank method for Indonesian text. The evaluation results of this study showed an accuracy value of 95.53% and an f1-score of 59.32% with a threshold configuration of 80% and using all keyword candidates.
Analyzing Co-Authorship Networks in Indonesian PTN-BH Institution Through Social Network Analysis Firdaus, Firdaus; Nurmaini, Siti; Darmawahyuni, Annisa; Rachmatullah, Muhammad Naufal; Raflesia, Sarifah Putri; Lestarini, Dinda
Computer Engineering and Applications Journal Vol 14 No 1 (2025)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18495/comengapp.v14i1.1265

Abstract

This study involved an examination of bibliographic information from Indonesia. Our approach centered on utilizing social network analysis to explore the co-authorship relationships among Indonesian authors, focused on the co-authorship network within the context of authors affiliated with Indonesian state universities known as "PTN-BH," which specialize in higher education and legal studies. To conduct our analysis, we gathered publication data from the Scopus database, spanning a time frame from 1948 to 2020. The primary methodology entailed constructing a graph composed of nodes and edges, representing the co-authorship connections among these authors. By employing the Louvain method, we were able to identify prominent communities within this graph. We carried out a comprehensive analysis at both macro and micro levels, involving measurement techniques tailored to these perspectives. Through this approach, we revealed and examined the collaboration patterns among authors associated with PTN-BH institutions, as illuminated by the co-authorship network analysis.
Inter Patient Atrial Fibrillation Classification Using One Dimensional Convolution Neural Network Rifai, Ahmad; Rachmatullah, Muhammad Naufal; Sutarno; Tutuko, Bambang
Computer Engineering and Applications Journal (ComEngApp) Vol. 11 No. 1 (2022)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Atrial fibrillation is the most common type of arrhythmia. The process of detecting AF disease is quite difficult. This is because it is necessary to detect the presence or absence of a P signal wave in the ECG signal. However, this method requires special expertise from a cardiologist. Several literatures have proposed an automatic ECG classification system. However, the intra-patient paradigm does not simulate real-world scenarios. One of the challenges in the inter-patient paradigm is the morphological differences between one subject and another. In order to overcome the problems that arise in the automatic classification of ECG signal patterns a deep learning approach was proposed. This study proposes the classification process of atrial fibrillation in the inter-patient paradigm using a one-dimensional convolutional neural network architecture. The test is divided into two cases: two labels (Normal and AF) and three labels (Normal, AF and Non-AF). In the case of two test labels with an inter-patient scheme, the performance was 100% for all test metrics (accuracy, sensitivity, precision, and F1-Score). However, in the three-label case, the model's performance decreased to 85.95, 70.02, 72.50, 71.19 for accuracy, sensitivity, precision and F1-Score, respectively.
Multiclass Segmentation of Pulmonary Diseases using Convolutional Neural Network Arnaldo, Muhammad; Nurmaini, Siti; Satria, Hadipurnawan; Rachmatullah, Muhammad Naufal
Computer Engineering and Applications Journal (ComEngApp) Vol. 11 No. 1 (2022)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Pulmonary disease has affected tens of millions of people in the world. This disease has also become the cause of death of millions of its sufferers every year. In addition, lung disease has also become the cause of other respiratory complications, which also causes the death of the sufferer. The diagnosis of pulmonary diseases through medical imaging is a significant challenge in computer vision and medical image processing. The difficulty is due to the wide variety in infected areas' shape, dimension, and location. Another challenge is to differentiate one lung disease from the other. Discriminating pulmonary diseases is a notable concern in the diagnosis of pulmonary disease. We have adopted the deep learning convolutional neural network in this study to address these challenges. Seven models were constructed using the Mask Region-based Convolutional Neural Network (Mask-RCNN) architecture to detect and segment infected areas within the lung region from CT scan imagery. The evaluation results show that the best model obtained scores of 91.98%, 85.25%, and 93.75% for DSC, MIoU, and mAP, respectively. The segmentation results are then visualized.
Identification of Indonesian Authors Using Deep Neural Networks Firdaus; Fahreza, Irvan; Nurmaini, Siti; Darmawahyuni, Annisa; Sapitri, Ade Iriani; Rachmatullah, Muhammad Naufal; Lestari, Suci Dwi; Fachrurrozi, Muhammad; Afrina, Mira; Putra, Bayu Wijaya
Computer Engineering and Applications Journal (ComEngApp) Vol. 11 No. 1 (2022)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Author Name Disambiguation (AND) is a problem that occurs when a set of publications contains ambiguous names of authors, i.e. the same author may appear with different names (synonyms) in other published papers, or author (authors) who may be different who may have the same name (homonym). In this final project, we will design a model with a Deep Neural Network (DNN) classifier. The dataset used in this final project uses primary data sourced from the Scopus website. This research focuses on integrating data from Indonesian authors. Parameters accuracy, sensitivity and precision are standard benchmarks to determine the performance of the method used to solve AND problems. The best DNN classification model achieves 99.9936% Accuracy, 93.1433% Sensitivity, 94.3733% Precision. Then for the highest performance measurement, the case of Non Synonym-Homonym (SH) has 99.9967% Accuracy, 96.7388% Sensitivity, and 97.5102% Precision.
Classification of Atrial Fibrillation In ECG Signal Using Deep Learning Fachrurrozi, Muhammad; Rachmatullah, Muhammad Naufal; Setiadi, Raihan Mufid
Computer Engineering and Applications Journal (ComEngApp) Vol. 12 No. 3 (2023)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Atrial fibrillation is a type of heart rhythm disorder that most often occurs in the world and can cause death. Atrial fibrillation can be diagnosed by reading an Electrocardiograph (ECG) recording, however, an ECG reading takes a long time and requires specialists to analyze the type of signal pattern. The use of deep learning to classify Atrial Fibrillation in ECG signals was chosen because deep learning has 10% higher performance compared to machine learning methods. In this research, an application for classification of Atrial Fibrillation was developed using the 1- Dimentional Convolutional Neural Network (CNN 1D) method. There are 6 configurations of the 1D CNN model that were developed by varying the configuration on the learning rate and batch size. The best model obtained 100% accuracy, 100% precision, 100% recall, and 100% F1 Score.
Forecasting Of Intensive Care Unit Patient Heart Rate Using Long Short-Term Memory Firdaus; Fachrurrozi, Muhammad; Nurmaini, Siti; Tutuko, Bambang; Rachmatullah, Muhammad Naufal; Darmawahyuni, Annisa; Sapitri, Ade Iriani; Islami, Anggun; Maharani, Masayu Nadila; Putra, Bayu Wijaya
Computer Engineering and Applications Journal (ComEngApp) Vol. 12 No. 3 (2023)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Cardiac arrest remains a critical concern in Intensive Care Units (ICUs), with alarmingly low survival rates. Early prediction of cardiac arrest is challenging due to the complexity of patient data and the temporal nature of ICU care. To address this challenge, we explore the use of Deep Learning (DL) models, specifically Long ShortTerm Memory (LSTM), Bidirectional LSTM (BiLSTM), and Gated Recurrent Unit (GRU), for forecasting ICU patient heart rates. We utilize a dataset extracted from the MIMIC III database, which poses the typical challenges of irregular time series data and missing values. Our research encompasses a comprehensive methodology, including data preprocessing, model development, and performance evaluation. Data preprocessing involves regularizing and imputing missing values, as well as data normalization. The dataset is partitioned into training, testing, and validation sets to facilitate model training and evaluation. Fine-tuning of hyperparameters is conducted to optimize each DL architecture's performance. Our results reveal that the GRU architecture consistently outperforms LSTM and BiLSTM in predicting heart rates, achieving the lowest RMSE and MAE values. The findings underscore the potential of DL models, particularly GRU, in enhancing the early detection of cardiac events in ICU patients.
TeleOTIVA: Advanced AI-Powered Automated Screening System for Early Detection of Precancerous Lesions Rachmatullah, Muhammad Naufal; Nurmaini, Siti; Agustiansyah, Patiyus; Sastradinata, Irawan; Arum, Akhiar Wista; Firdaus; Darmawahyuni, Annisa; Tutuko, Bambang; Sapitri, Ade Iriani; Islami, Anggun
Computer Engineering and Applications Journal (ComEngApp) Vol. 14 No. 1 (2025)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

In 2023, the Indonesian Ministry of Health launched the Rencana Aksi Nasional (RAN) to enhance the detection and management of cervical cancer in Indonesia. One of the main pillars in this movement is the implementation of early screening for precancerous lesions aimed at identifying and treating these lesions before they develop into cervical cancer. This effort includes improving public access to healthcare services, providing education and awareness about the importance of early detection, and utilizing the latest technology in screening procedures. It is hoped that, through these targeted and effective interventions, the incidence of cervical cancer can be significantly reduced. This research aims to facilitate the early detection screening process for cervical precancerous lesions, particularly in difficult areas for medical experts to reach. This study also seeks to assist obstetricians and gynecologists in detecting precancerous lesions automatically, quickly, and accurately. By developing an advanced technology-based screening system, it is hoped that early detection of precancerous lesions can be carried out more efficiently, thereby increasing the chances of timely treatment and reducing the incidence of cervical cancer across various regions in Indonesia. This system is designed to provide reliable and user-friendly diagnostic support as it is developed on a mobile platform that can be accessed anytime and anywhere. This research developed a system for early screening called TeleOTIVA. The TeleOTIVA application system is an advanced platform that uses artificial intelligence (AI) based approaches to provide optimal services in early detection of precancerous lesions. This application is designed for mobile, allowing users to access and use its advanced features anytime and anywhere. With the integration of AI technology, TeleOTIVA can detect and analyze cervical precancerous lesions accurately and quickly to provide accurate and efficient screening results. The TeleOTIVA application system is capable of providing satisfactory detection results. The performance of the proposed model achieves accuracy, sensitivity, and specificity levels above 90%. With this high performance, TeleOTIVA ensures that the detection of precancerous lesions is carried out with high reliability and precision, instilling greater confidence in healthcare professionals and users during the screening and diagnosis process. The implementation of our application model offers numerous advantages over traditional methods. It significantly enhances efficiency by automating processes, reduces human error through rigorous error-checking mechanisms, and accelerates the processing of large datasets. These improvements streamline operations and ensure more reliable and rapid data analysis.
Analyzing Co-Authorship Networks in Indonesian PTN-BH Institution Through Social Network Analysis Firdaus; Nurmaini, Siti; Kurniawan, Anggy Tias; Darmawahyuni, Annisa; Rachmatullah, Muhammad Naufal; Raflesia, Sarifah Putri; Lestarini, Dinda
Computer Engineering and Applications Journal (ComEngApp) Vol. 14 No. 1 (2025)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This study involved an examination of bibliographic information from Indonesia. Our approach centered on utilizing social network analysis to explore the co-authorship relationships among Indonesian authors, focused on the co-authorship network within the context of authors affiliated with Indonesian state universities known as "PTN-BH," which specialize in higher education and legal studies. To conduct our analysis, we gathered publication data from the Scopus database, spanning a time frame from 1948 to 2020. The primary methodology entailed constructing a graph composed of nodes and edges, representing the co-authorship connections among these authors. By employing the Louvain method, we were able to identify prominent communities within this graph. We carried out a comprehensive analysis at both macro and micro levels, involving measurement techniques tailored to these perspectives. Through this approach, we revealed and examined the collaboration patterns among authors associated with PTN-BH institutions, as illuminated by the co-authorship network analysis.
Co-Authors Abdurahman Ade Iriani Sapitri Ade Iriani Sapitri Ahmad Rifai Ahmad Rizky Fauzan Akhiar Wista Arum Akhtiar W Arum Al Farissi Al-Filambany, Muhammad Gibran Ananda, Dea Agustria Andre Herviant Juliano Anggun Islami Anggun Islami Anita Desiani Annisa Darmawahyuni Annisa Darmawahyuni Armansyah, Risky Arnaldo, Muhammad Arum, Akhiar Wista Bambang Tutuko Bambang Tutuko Bambang Tutuko Bayu Wijaya Putra Darmawahyuni, Annisa Darmawahyuni, Annisa Desty Rodiah Dewi Chayanti Dian Palupi Rini Dian Palupi Rini Dinda Lestarini Dite Geovanni Erwin Erwin Erwin, Erwin Fadel Muhammad, Fadel Fahreza, Irvan Firdaus Firdaus Firdaus Firdaus Firdaus Firdaus Firdaus Firdaus Firdaus Geovanni, Dite Hadipurnawan Satria Hanif Habibie Supriansyah Irvan Fahreza Islami, Anggun Kurniawan, Anggy Tias M. Fachrurrozi . Maharani, Masayu Nadila Masayu Nadila Maharani Mira Afrina Muhammad Akmal Shidqi Muhammad Arnaldo Muhammad Fachrurrozi Muhammad Fachrurrozi Muhammad Gibran Al-Filambany Muhammad Irham Rizki Fauzi Muhammad Taufik Roseno, Muhammad Taufik Novi Yusliani Patiyus Agustiansyah PATIYUS AGUSTIANSYAH, PATIYUS Putri Mirani Rahmat Fadli Isnanto Raihan Mufid Setiadi Raihan Mufid Setiadi Renny Amalia Pratiwi Reza Firsandaya Malik Ricy Firnando Ricy Firnando Rossi Passarella Samsuryadi Samsuryadi Sapitri, Ade Iriani Saputra, Tommy Sari, Ririn Purnama Sarifah Putri Raflesia, Sarifah Putri Sastradinata, Irawan Setiadi, Raihan Mufid Shidqi, Muhammad Akmal Siti Nurmaini Sri Indra Maiyanti Sri Indra Maiyanti Suci Dwi Lestari Suci Dwi Lestari Sugandi Yahdin Sukemi Sukemi Sukemi Sutarno Sutarno Sutarno Syaputra, Hadi Tio Artha Nugraha Varindo Ockta Keneddi Putra Yesi Novaria Kunang