Claim Missing Document
Check
Articles

Sistem Pendukung Keputusan Penilaian Karyawan Terbaik PT. Suteckariya Indonesia Dengan Metode Analytical Hierarchy Process: Sistem Pendukung Keputusan Penilaian Karyawan Terbaik PT. Suteckariya Indonesia Dengan Metode Analytical Hierarchy Process Prima Dina Atika
Competitive Vol. 11 No. 1 (2016): Jurnal Competitive
Publisher : PPM Universitas Logistik dan Bisnis Internasional

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Dalam sebuah perusahaan, karyawan adalah salah satu komponen bagian penentu keberhasilan suatuperusahaan. Tenaga kerja yang berkualitas akan memudahkan perusahaan dalam mengelola aktivitasnya sehinggatujuan yang ditetapkan dapat tercapai. Untuk mendapatkan tenaga kerja (Sumber Daya Manusia /SDM) yangberkualitas bukanlah hal yang mudah. Hal tersebut berkaitan pada suatu momen untuk mengambil sebuah keputusan.Kemampuan mengambil keputusan yang cepat dan cermat menjadi kunci keberhasilan dalam persaingan global danuntuk mengambil sebuah keputusan tentu diperlukan analisis-analisis dan perhitungan yang matang dan tergantungkepada banyak sedikitnya kriteria yang mempengaruhi permasalahan yang membutuhkan suatu keputusan.Pengambilan suatu keputusan dengan banyak kriteria memerlukan suatu cara penanganan khusus terutama bila kriteriapengambilan keputusan tersebut saling terkait.Untuk itu dibutuhkan suatu model sebelum keputusan diambil.Dari penjelasan diatas, maka penulis ingin membuat model pengambilan keputusan yang dapat menjadi rujukandalam proses penilaian karyawan terbaik di PT. SURTECKARIYA INDONESIA, sehingga diharapkan bisamenseleksi karyawan yang sesuai dengan kriteria dan kebutuhan perusahaan.
Pengoptimalan Penggunaan Smartphone Sebagai Digital Marketing Pada SMAN 14 Bekasi Prima Dina Atika; Fata Nidaul Khasanah; Herlawati; Rafika Sari; Endang Retnoningsih; Rahmadya Trias Handayanto; Tyastuti Sri Lestari
Journal Of Computer Science Contributions (JUCOSCO) Vol. 1 No. 2 (2021): Juli 2021
Publisher : Lembaga Penelitian, Pengabdian kepada Masyarakat dan Publikasi Universitas Bhayangkara Jakarta Raya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31599/jucosco.v1i2.698

Abstract

Penggunaan internet untuk aktivitas transaksi bisnis dikenal dengan istilah Electronic Commerce (E-commerce). Hal ini ditandai dengan meningkatnya jumlah pengusaha yang menggunakan e-commerce dalam perusahaannya. Digital marketing memudahkan pebisnis memantau dan menyediakan segala kebutuhan dan keinginan calon konsumen, di sisi lain calon konsumen juga bisa mencari dan mendapatkan informasi produk hanya dengan cara menjelajah dunia maya sehingga mempermudah proses pencariannya. Mitra dari kegiatan pengabdian kepada masyarakat yaitu guru SMA Negeri 14 Bekasi. Hal ini dilakukan sebagai upaya pengenalan dalam pengoptimalan penggunaan smartphone yang tidak hanya digunakan untuk sekedar menulis pesan, melakukan panggilan dan bersosial media saja, namun dapat juga dijadikan sebagai media yang mampu mendukung kegiatan usaha atau bisnis yang dimiliki oleh beberapa Guru. Pelaksanaannya materi yang dipaparkan mengenai pengantar digital marketing dan teknis penggunaan salah satu ­e-commerce Shopee. Metode pelaksanaan kegiatan ini dimulai dari penyuluhan, pelatihan dan evaluasi. Hasil dari kegiatan pelatihan menunjukkan para peserta antusias dengan adanya kegiatan ini dan menganggap materi yang dipaparkan sangat menarik dan bermanfaat.
Sistem Informasi Pemilihan Peserta Program Indonesia Pintar (PIP) Dengan Metode K-Nearest Neighbor pada SD Negeri Pejuang V Kota Bekasi Prihatin, Sandy Satyo; Atika, Prima Dina; Herlawati, Herlawati
Journal of Students‘ Research in Computer Science Vol. 2 No. 2 (2021): November 2021
Publisher : Program Studi Informatika Fakultas Ilmu Komputer Universitas Bhayangkara Jakarta Raya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31599/g0q7c702

Abstract

The selection of participants for the Smart Indonesia Program (PIP) is an activity to determine students who are eligible for assistance. This study aims to create an information system for the Selection of Participants for the Smart Indonesia Program (PIP) which will assist Administrative Staff and SD Negeri Pejuang V Bekasi City in determining eligible and ineligible participants for assistance. The method used in this information system uses the K-Nearest Neighbor algorithm. The K-Nearest Neighbor process is carried out by giving weight to the student data attributes and looking for the Euclidean distance, then sorted from the smallest distance, after sorting the student data then looking for the closest distance to the training data. The K-Nearest Neighbor algorithm in data training is very fast, simple, easy to learn, effective with large training data and is resistant to data containing incorrect or anomalous values. The results of this study obtained student data as many as 77 students, there are True Positive (TP) data of 5 data, False Positive (FN) of 7 data, True Negative (TN) of 65 data and False Negative (FP) of 0. Results The accuracy obtained is 90.90% with a value of k=10.
Pencarian Jalur Terdekat Pada Pemetaan Sekolah Dasar Dengan Algoritma A-Star (A*) Berbasis Web Tambun, Jerisman Jhon Wesli; Herlawati, Herlawati; Atika, Prima Dina
Journal of Students‘ Research in Computer Science Vol. 3 No. 1 (2022): Mei 2022
Publisher : Program Studi Informatika Fakultas Ilmu Komputer Universitas Bhayangkara Jakarta Raya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31599/8e7aw911

Abstract

Elementary school is the starting place for a child to start education and get various kinds of experiences. Elementary school is the highest level of education compared to Junior High School and Senior High School. The large number of elementary schools makes parents/guardians not know for sure where the elementary school is located. This makes parents/guardians not have many references to send their children to school in the future. Based on the existing problems, the author proposes a web-based geographic information system that uses the A-Star Algorithm (A*) to be used as a means of information and also to add references to parents/guardians. The A-Star Algorithm (A*) is a method to search for information about the distance to reach the destination by selecting the closest route. The result of this research is a web-based geographic information system that can provide information about 6 samples of elementary schools along with the location and the closest route that can be passed in the Mustikajaya District area.
Analisis Sentimen Masyarakat Terhadap Perkuliahan Daring di Twitter Menggunakan Algoritma Naive Bayes dan Support Vector Machine Samuel, Federick Dedi; Atika, Prima Dina; Setiawati, Siti
Journal of Students‘ Research in Computer Science Vol. 4 No. 2 (2023): November 2023
Publisher : Program Studi Informatika Fakultas Ilmu Komputer Universitas Bhayangkara Jakarta Raya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31599/6691v571

Abstract

The COVID-19 pandemic has changed the education landscape around the world, resulting in the cessation of in-person teaching and learning activities and encouraging the adoption of online learning systems. Many Indonesians express their opinions and thoughts about online courses through the social media Twitter. Therefore, this study aims to analyze people's sentiment towards online lectures on Twitter using Naïve Bayes and Support Vector Machine (SVM) methods. Data for sentiment analysis is taken from Twitter using the keywords "#college", "#daring", and "#kuliahdaring". This study limits data collection to the range of 2021-2022. A total of 1,260 Tweets were analyzed, with 633 Tweets having positive sentiments and 627 Tweets having negative sentiments. This study uses Naïve Bayes and Support Vector Machine algorithms to classify positive and negative sentiments in Tweets. The results showed that Naïve Bayes algorithm achieved the highest accuracy of 72%, while Support Vector Machine achieved 66% accuracy.
Workshop Pengembangan Media Pembelajaran Interaktif Kreatif Dalam Melaksanakan Tri Dharma Perguruan Tinggi Di SMK Widya Nusantara Bekas Herlawati, Herlawati; Khasanah, Fata Nidaul; Sari, Rafika; Atika, Prima Dina; Sugiyatno, Sugiyatno; Handayanto, Rahmadya Trias; Samsiana, Seta
Jurnal Pengabdian kepada Masyarakat UBJ Vol. 5 No. 1 (2022): January 2022
Publisher : Lembaga Penelitian Pengabdian kepada Masyarakat dan Publikasi Universitas Bhayangkara Jakarta Raya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31599/ye8zv507

Abstract

SMK Widya Nusantara is one of the best vocational schools in the city of Bekasi whose students and teachers have the hope of creating independent and characterized people who are based on faith and piety. The main element to be able to realize the hopes of the Vocational High School is that it has collaborated with universities in training activities and improving knowledge from various fields, so that they can compete in the era of globalization. Currently strengthening the competence of students and teachers is the main thing, because later they will be able to compete with other developed countries. To strengthen these competencies, training and simulations on the development of creative interactive learning media were carried out at SMK Widya Nusantara. It begins with a survey, then it is analyzed and finally the training activities are carried out. The result of this community service is that students and teachers are able to understand the creation of creative interactive learning media such as the use of a mentimeter, classroom google, youtube and the use of powerpoint, examples and their application, so that students and teachers have special knowledge about this which is useful for increasing competence and global competition.
Pelatihan Pembuatan Media Pembelajaran Interaktif Bentuk Presenter-View-Recorder dan Mentimeter Sari , Rafika; herlawati, herlawati; Khasanah, Fata Nidaul; Atika, Prima Dina
Jurnal Pengabdian kepada Masyarakat UBJ Vol. 4 No. 3 (2021): Special Issue (December 2021)
Publisher : Lembaga Penelitian Pengabdian kepada Masyarakat dan Publikasi Universitas Bhayangkara Jakarta Raya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31599/et7p8v44

Abstract

During the Covid-19 pandemic, most educators used social media to deliver learning material files without verbal explanation, unlike face-to-face learning in class. Through these limited facilities, it has an effect between teachers and students experiencing interaction problems which can be used as a benchmark for the absorption of the material provided by the teacher and understanding of the material for students. Based on this problem, we took the initiative to make community service activities by providing training on the use of the Powerpoint Presenter-View-Recorder and Interactive Mentimeter applications as interaction media in online learning, which are still rarely used by teachers, especially at SMPN 264 Jakarta. The implementation of this training program aims to provide breakthroughs in teaching. Students are expected not to be bored while participating in learning activities. The innovation used is by optimizing the Powerpoint application in the form of Presenter-View-Recorder as well as using the Interactive Mentimeter application and directly uploading learning videos that have been made to the Google Classroom application and Youtube social media.
Prediksi Wilayah Calon Siswa Baru Menggunakan Jaringan Syaraf Tiruan dengan Model Backpropagation untuk Optimasi Promosi atika, prima dina
Jurnal Teknologi Terpadu Vol 5 No 2: Desember, 2019
Publisher : LPPM STT Terpadu Nurul Fikri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54914/jtt.v5i2.225

Abstract

Lokasi promosi merupakan salah satu faktor keberhasilan sekolah dalam melaksanakan kegiatan promosi. Jaringan Syaraf Tiruan Backpropagation akan digunakan untuk memprediksi lokasi tersebut. Kemudian dibentuk Jaringan Syaraf dengan menentukan jumlah unit neuron pada setiap lapisannya dan dilatih dengan data pelatihan untuk mengenali pola penerimaan yang sudah terjadi. Bobot hasil pelatihan akan disimulasikan pada data pengujian, output dari simulasi data pengujian merupakan persentase keberhasilan promosi pada suatu wilayah yang bisa dijadikan referensi untuk mengoptimalkan kegiatan promosi pada wilayah dengan persentase keberhasilan tertinggi. Perancangan penelitian dilakukan berdasarkan tahapan Cross-Industry Standard Process-Data Mining (CRISP-DM). Hasil yang didapat Jaringan Syaraf Tiruan Backpropagation menghasilkan akurasi yang lebih besar dibandingkan dengan jumlah siswa yang ditargetkan oleh sekolah bila dibandingkan dengan hasil yang sebenarnya. JST backpropagation menghasilkan rata-rata akurasi sebesar 71.56 % dan target promosi menghasilkan rata-rata akurasi sebesar 68.40% terhadap hasil sebenarnya.
IMPLEMENTATION OF K-MEANS ALGORITHM AS A CLUSTERING METHOD FOR SELECTING ACHIEVEMENT STUDENTS BASED ON ACADEMIC GRADE Nirmala, Indah Dwijayanthi; Atika, Prima Dina
Jurnal Pilar Nusa Mandiri Vol 16 No 2 (2020): Pilar Nusa Mandiri : Journal of Computing and Information System Publishing Peri
Publisher : LPPM Universitas Nusa Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33480/pilar.v16i2.1575

Abstract

Increased student success and low student failure rates are a reflection of good quality in the field of education. Awareness of the importance of education determines the quality in utilizing existing resources, including human resources, facilities and infrastructure as well as technological resources. The large number of students in school as well as the variety of different abilities and academic qualifications for each student, makes it difficult for the school to facilitate the search for outstanding student selection based on academic scores. Therefore it is necessary to do the data to be processed into information and knowledge as a grouping of outstanding students from assignment scores, test scores, and student practice scores as variables that will be supporting values in the selection of outstanding students. Data mining can be proposed as an approach that can be used to predict the selection of outstanding students. In this study, the application of the kmeans clustering algorithm is proposed to predict the selection of outstanding students based on academic scores.
Sentiment Analysis of Application Reviews using the K-Nearest Neighbors (KNN) Algorithm Wijati, Damar; Atika, Prima Dina; Setiawati, Siti; Rasim, Rasim
PIKSEL : Penelitian Ilmu Komputer Sistem Embedded and Logic Vol. 12 No. 1 (2024): March 2024
Publisher : LPPM Universitas Islam 45 Bekasi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33558/piksel.v12i1.9490

Abstract

Product reviews play a crucial role in evaluating user satisfaction and overall performance. Vidio, one of the over-the-top (OTT) media platforms, offers a wide range of entertainment content, including movies, TV shows, sports events, music shows, lifestyle programs, and more, accessible through its application. Users have the opportunity to provide reviews and feedback on their experience with the Vidio application. Therefore, this research was conducted to analyze user sentiment towards the Vidio application on the Google Play Store platform using the K-Nearest Neighbors (KNN) method. Data for sentiment analysis were randomly selected from the Vidio application based on the most relevant reviews. A total of 3,000 data were analyzed, with 2,238 data in the negative class, 508 data in the neutral class, and 254 data in the positive class. This research used the K-Nearest Neighbors (KNN) method for classifying reviews based on negative, neutral, and positive classes, and the Multiclass Confusion Matrix for model evaluation. With a data split of 70% for training data 30% for testing data, and several n_neighbors of 10 data, the results in an accuracy of 81.6%, precision of 79%, recall of 81.6%, and F1-Score of 77%.