Claim Missing Document
Check
Articles

Found 34 Documents
Search

Dual Reciprocity Boundary Element Method for Steady Infiltration Problems from Furrow Irrigation Channels in Heterogeneous Soil Manaqib, Muhammad; Irene, Yanne; Liebenlito, Muhaza; Aulia, Rizki
(IJCSAM) International Journal of Computing Science and Applied Mathematics Vol 11, No 1 (2025)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24775401.v11i1.18975

Abstract

This research discusses solving the problem of infiltration of furrow irrigation channels in heterogeneous soil containing five soil layers using the Dual Reciprocity Boundary Element Method (DRBEM) numerical method. The mathematical infiltration model in furrow irrigation channels takes the form of the Richard Equation, which is transformed into a modified Helmholtz equation with mixed boundary conditions. Solving with DRBEM shows that in heterogeneous and homogeneous soils, the soil type influences the suction potential and water content values. Different soil depths in heterogeneous soil produce variations and jumps in suction potential and water content values in each soil layer.
Mathematical modelling of covid-19 using health mask, vaccination, quarantine, and asymptomatic case Manaqib, Muhammad; Wijaya, Madona Yunita; Yahya, Amelia Nur
Desimal: Jurnal Matematika Vol. 7 No. 3 (2024): Desimal: Jurnal Matematika
Publisher : Universitas Islam Negeri Raden Intan Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24042/djm.v7i3.24397

Abstract

This study develops a SEIR (Susceptible, Exposed, Infectious, and Recovered) model to model the spread of COVID-19 by adding the use of health masks, vaccinations, quarantines, and asymptomatic compartments. The model is analyzed using equilibrium point stability analysis and numerical simulation. Based on the system, two equilibrium points are obtained, namely the disease-free equilibrium point and the endemic equilibrium point, and the basic reproduction number (Ro). The stability analysis of the disease-free equilibrium point will be locally asymptotically stable if Ro<1. The numerical simulation results show that the disease will disappear from the population if Ro<1  and remain in the population if Ro>1 . Based on the sensitivity analysis, parameters with significant impact are the level of awareness of individuals in using health masks, vaccination rates, contact rates with symptomatic or asymptomatic infected individuals, and quarantine rates for symptomatic infected individuals.
ANALISIS MODEL MATEMATIKA PENYEBARAN PENYAKIT COVID-19 DENGAN LOCKDOWN DAN KARANTINA Manaqib, Muhammad; Azizah, Maghvirotul; Hartati S., Eti; Pratiwi, Savira; Maulana, Raza Aqil
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 15 No 3 (2021): BAREKENG: Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (665.41 KB) | DOI: 10.30598/barekengvol15iss3pp479-492

Abstract

Penelitian ini menggembangakan model matematika penyebaran penyakit COVID-19 SEIR dengan lockdown dan karantina. Pembentukan model diawali dengan membuat asumsi dan diagram kompartemen alur penyebaran COVID-19 dengan lockdown dan karantina. Kemudian dibentuk sistem persamaan diferensial nonlinear berdasarkan diagram kompartemen tersebut. Analisis sistem dilakukan dengan menentukan titik ekuilibrium dan bilangan reproduksi dasar (). Hasilnya diperoleh dua buah titik ekuilibrium yakni titik ekuilibrium bebas penyakit yang eksistensinya tanpa syarat dan titik ekuilibrium endemik yang eksistensinya bergantung pada bilangan reproduksi dasar (> 1). Selanjutnya, analisis kestabilan titik ekuilibrium bebas penyakit menggunakan analisis nilai eigen matriks Jacobi dan Kriteria Routh-Hurwitz diperoleh titik kestimbangan bebas penyakit bersifat stabil asimtotik lokal jika . Terakhir simulasi model dilakukan untuk memberikan gambaran geometris dari solusi dan untuk mendukung teorema yang diperoleh. Hasil simulasi numerik yang dilakukan mendukung hasil analisis dinamik yang diperoleh.
MATHEMATICAL MODEL OF THREE SPECIES FOOD CHAIN WITH INTRASPECIFIC COMPETITION AND HARVESTING ON PREDATOR Manaqib, Muhammad; Suma'inna, Suma'inna; Zahra, Amalia
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 16 No 2 (2022): BAREKENG: Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (715.177 KB) | DOI: 10.30598/barekengvol16iss2pp551-562

Abstract

This research develops a mathematical model of three species of food chains between prey, predator, and top predator by adding intraspecific competition and harvesting factors. Interaction between prey with predator and interaction between predator with top predator uses the functional response type II. Model formation begins with creating a diagram food chain of three species compartments. Then a nonlinear differential equation system is formed based on the compartment diagram. Based on this system four equilibrium points are obtained. Analysis of local stability at the equilibrium points by linearization shows that there is one unstable equilibrium point and three asymptotic stable local equilibrium points. Numerical simulations at equilibrium points show the same results as the results of the analysis. Then numerical simulations on several parameter variations show that intraspecific competition has little effect on population changes in predator and top predator. While the harvesting parameter predator affects the population of predator and top predator.
ANALYSIS OF THE COVID-19 EPIDEMIC MODEL WITH SELF-ISOLATION AND HOSPITAL ISOLATION Manaqib, Muhammad; Padilah, Tesa Nur; Maulana, Iqbal
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 17 No 4 (2023): BAREKENG: Journal of Mathematics and Its Applications
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol17iss4pp2147-2160

Abstract

This research developed the SIR model with self-isolation and hospital isolation. The analysis is carried out through the disease-free and endemic equilibrium point analysis and the sensitivity analysis of the basic reproduction number. Based on the disease-free equilibrium point analysis, for a certain period of time the population will be free from COVID-19 if the basic reproduction number is less than 1. If the basic reproduction number is more than 1, the disease will persist in the population, this will lead to an endemic equilibrium point. Based on the sensitivity analysis of parameter values on the basic reproduction number, the parameter for the isolation rate of individually infected individuals in hospitals is -0.4615166040, and the self-isolation rate at home is -0.01853667767. This indicates that isolation in hospitals is more effective than self-isolation in suppressing the spread of COVID-19.
The Analysis of Epidemic Dynamical Models for Dengue Transmission Considering the Mosquito Aquatic Phase Inayah, Nur; Manaqib, Muhammad; Fitriyati, Nina; Wijaya, Madona Yunita; Fiade, Andrew; Sari, Flori Ratna
Jambura Journal of Biomathematics (JJBM) Volume 6, Issue 3: September 2025
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37905/jjbm.v6i3.29332

Abstract

This  study  generalizes the dengue  transmission model  by  considering the dynamics of the human population and  the Aedes  aegypti mosquito  population.  The  mosquito  population is  devided into  two  phases,  i.e.,  the aquatic  phase and the adult  phase.  From  the model,  we seek the disease-free  equilibrium, endemic  equilibrium, and  basic  reproduction number   (R0) points.    The  model  yields a  single   basic  reproduction number   which determines the system’s  behavior.   If  R0    1,  the disease-free  equilibrium is  locally  asymptotically stable, indicating that the disease  will die out.  Conversely, if R0    1, an endemic  equilibrium exists,  and  the disease may  persist  in the  population.    Next,   a  numerical simulation  is  performed  to  geometrically  visualize   the resulting analysis  and  also  to  simulate the  dengue   transmission in  DKI Jakarta   Province,  Indonesia.   The resulting  numerical simulation  supports our  analysis.   Meanwhile, the  simulation in  DKI Jakarta  Province suggests that  the dengue  fever  disappears after  60 days  from  the first  case appearance  after  controlling  the mosquito  population through fogging and the use of mosquito  larvae  repellent.  Lastly, the sensitivity analysis of R0   indicates  that  parameters   related  to  the  mosquito’s  aquatic   phase  have  a  strong   influence   on  dengue transmission, meaning that small  changes  in these parameters  can significantly increase or decrease the value  of R0  and thus the potential  for an outbreak.
DUAL RECIPROCITY BOUNDARY ELEMENT METHOD FOR SOLVING TIME-DEPENDENT WATER INFILTRATION PROBLEMS IN IMPERMEABLE CHANNEL IRRIGATION SYSTEMS Irene, Yanne; Manaqib, Muhammad; Alamsyah, Mochammad Rafli; Wijaya, Madona Yunita
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 19 No 4 (2025): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol19iss4pp2583-2596

Abstract

The mathematical model of water infiltration in a furrow irrigation channel with an impermeable layer in homogeneous soil is formulated as a Boundary Value Problem (BVP) with the Modified Helmholtz Equation as the governing equation and mixed boundary conditions. The purpose of this study is to solve the infiltration problem using the Dual Reciprocity Boundary Element Method (DRBEM). The results show that the highest values of suction potential and water content are located beneath the permeable channel, while the lowest values are found at the soil surface outside the channel and beneath the impermeable layer. The values of suction potential and water content increase over time t and converge, indicating stability in the infiltration process. These findings align well with real-world scenarios, demonstrating that the developed mathematical model and its numerical solution using DRBEM accurately illustrate the time-dependent water infiltration process in impermeable furrow irrigation channels.
An Analysis of Water Infiltration in Furrow Irrigation Channels with Plants in Various Types of Soil in the Special Region of Yogyakarta Using Dual Reciprocity Boundary Element Method Irene, Yanne; Manaqib, Muhammad; Ramadhanty, Vina Wulandari; Ria Affriani, Asri
JTAM (Jurnal Teori dan Aplikasi Matematika) Vol 8, No 3 (2024): July
Publisher : Universitas Muhammadiyah Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31764/jtam.v8i3.19873

Abstract

The analysis of water infiltration channels requires significant time and cost when conducted through laboratory experiments. Alternatively, mathematical modeling followed by numerical method can be employed. The mathematical model of water infiltration in furrow irrigation channels takes the form of a boundary value problem, with the Helmholtz equation serving as the governing equation. The Dual Reciprocity Boundary Element Method (DRBEM) is a numerical method derived from the Boundary Element Method (BEM), utilized for solving partial differential equations encountered in mathematical physics and engineering. This research employs DRBEM to analyze infiltration in trapezoidal irrigation channels with root-water uptake across various homogeneous soil types prevalent in agricultural lands in each District/City of the Yogyakarta Special Region Province. The results demonstrate that DRBEM provides numerical solutions for suction potential, water content, and root water absorption for each soil type. It was found that sandy soil exhibits high water content but has a low rate of root water absorption. On the other hand, clayey soil has low water content but a higher rate of root water uptake. These findings indicate that sandy soil, such as those found in Sleman District and Yogyakarta city, are less efficient in water usage when employing the furrow irrigation system, whereas clayey soil, as found in Gunung Kidul regency, is more effective.
Operator Solusi Model Fluida Termampatkan Tipe Korteweg Dengan Kondisi Batas Slip di Half-Space Kasus Koefisien ((mu + nu)/(2kappa))^2 - (1/kappa) > 0, where kappa = munu, mu = nu Suma Inna; Irma Fauziah; Muhammad Manaqib; Priska Maya Putri
Limits: Journal of Mathematics and Its Applications Vol. 20 No. 2 (2023): Limits: Journal of Mathematics and Its Applications Volume 20 Nomor 2 Edisi Ju
Publisher : Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Artikel ini membahas model fluida termampatkan tipe Korteweg dengan kondisi batas slip di half space space ( . Model ini biasanya digunakan untuk mendeskripsikan aliran fluida dua fase di mana terdapat fase transisi pada antarmuka fase tersebut yang dikenal dengan efek kapiler. Untuk mengatasi efek kapiler tersebut, Korteweg mengembangkan model Navier-Stokes dengan menambahkan unsur kapilaritas pada persamaan Navier-Stokes. Dalam artikel ini ditunjukkan bahwa terdapat solusi pada model Navier-Stokes tipe Korteweg untuk kasus di mana koefisien . Kasus koefisien ini muncul berdasarkan kondisi akar persamaan karakteristik dari model yang dibahas dalam artikel ini
Model Matematika COVID-19 dengan Vaksinasi Dua Tahap, Karantina, dan Pengobatan Mandiri Muhammad Manaqib; Rahmawati Annisa Salsadilla; Mahmudi
Limits: Journal of Mathematics and Its Applications Vol. 20 No. 3 (2023): Limits: Journal of Mathematics and Its Applications Volume 20 Nomor 3 Edisi No
Publisher : Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Penelitian ini mengembangkan model SEIR untuk memodelkan penyebaran COVID-19 dengan menambahkan vaksinasi dua tahap, isolasi mandiri, karantina di rumah sakit, dan pengobatan mandiri. Pembentukan model diawali dengan membuat asumsi dan diagram transfer penyebaran COVID-19 dengan populasi dibagi menjadi sembilan subpopulasi yaitu subpopulasi rentan, subpopulasi vaksinasi dosis 1, subpopulasi vaksinasi dosis 2, subpopulasi laten, subpopulasi terinfeksi, subpopulasi isolasi mandiri, subpopulasi karantina di rumah sakit, subpopulasi pengobatan mandiri, dan subpopulasi removed, kemudian dibentuk sistem persamaan diferensial nonlinear. Dari analisis model diperoleh titik ekuilibrium bebas penyakit, titik ekuilibrium endemik penyakit, dan bilangan reproduksi dasar (R0). Titik ekuilibrium bebas penyakit stabil asimtotik lokal ketika R0<1. Eksistensi titik ekuilbirum endemik terdapat satu atau tiga akar positif jika R0>1 dan terdapat nol atau dua akar positif jika R0<1. Bifurkasi mundur terjadi pada kondisi R0<1 sehingga diperoleh persamaan bifurkasi mundur R0c<R0<1. Simulasi numerik untuk model yang dibuat sesuai dengan analisis yang telah dilakukan. Analisis sensitivitas diperoleh parameter yang berpengaruh signifikan pada penyebaran COVID-19 adalah tingkat kontak dengan individu terinfeksi dan tingkat perpindahan vaksinasi dosis satu.