Claim Missing Document
Check
Articles

Found 34 Documents
Search

MODEL MATEMATIKA TRANSMISI HUMAN PAPILLOMAVIRUS (HPV) PADA PENYAKIT KANKER SERVIKS Muhammad Manaqib; Irma Fauziah; Wahyu Triwulan Asih
Jurnal Matematika UNAND Vol 11, No 4 (2022)
Publisher : Jurusan Matematika FMIPA Universitas Andalas Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jmua.11.4.230-245.2022

Abstract

Penelitian ini menggunakan model SVICTR untuk memodelkan transmisiHuman Papillomavirus (HPV) pada penyakit kanker serviks. Populasi dibagi menjadienam subpopulasi yaitu subpopulasi rentan, subpopulasi yang melakukan vaksinasiHPV dengan vaksin paling efektif, subpopulasi terinfeksi virus HPV, subpopulasi pengidap kanker serviks, subpopulasi yang melakukan treatment kanker serviks, dan subpopulasi removed. Dari model yang dibentuk diperoleh dua titik ekuilibrium yaitu titik ekuilibrium bebas penyakit dan titik ekulibrium endemik serta bilangan reproduksi dasar (R0). Titik ekuilibrium bebas penyakit stabil asimtotik lokal saat R0 < 1. Simulasi numerik titik ekuilibrium bebas penyakit dilakukan untuk memberikan gambaran geometris terkait hasil yang telah dianalisis dengan nilai parameter yang diambil dari beberapa sumber. Hasil analisis numerik sesuai dengan analisis yang dilakukan bahwa penyakit akan menghilang jika R0 < 1 dan menetap dalam populasi jika R0 > 1. Berdasarakan analisis sensitivitas, parameter yang paling berpengaruh adalah laju kontak dengan individuterinfeksi dan laju individu yang divaksinasi HPV
ANALISIS REGRESI LOGISTIK ORDINAL TERHADAP FAKTOR-FAKTOR YANG MEMPENGARUHI WAKTU TUNGGU KERJA ALUMNI MATEMATIKA FST UIN SYARIF HIDAYATULLAH JAKARTA Suma Inna; Dina Mariana; Mahmudi Mahmudi; Muhammad Manaqib
SIGMA Vol 8, No 2 (2023): SIGMA
Publisher : Prodi Pendidikan Matematika FKIP Universitas Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53712/sigma.v8i2.1597

Abstract

Penelitian ini membahas faktor - faktor yang mempengaruhi waktu tunggu kerja alumni Matematika FST UIN Syarif Hidayatullah Jakarta. Data yang digunakan adalah data Tracer Study alumni angkatan 2002-2012. Dari data tersebut, diambil beberapa faktor yang diduga mempengaruhi waktu tunggu kerja yang menjadi variabel independen yaitu jenis kelamin dengan kategori laki-laki dan perempuan; lama studi dengan kategori tepat waktu dan tidak tepat waktu; Indeks Prestasi Kumulatif (IPK) dengan kategori baik, amat baik, dan cumlaude;  kompetensi alumni yang terdiri atas bahasa inggris, keterampilan komputer, kemampuan berkomunikasi, berpikir kritis, kepemimpinan, kemampuan dalam memegang tanggung jawab; loyalitas dengan kategori sangat rendah, rendah, cukup tinggi, tinggi dan sangat tinggi. Untuk menentukan faktor-faktor yang mempengaruhi masa tunggu kerja digunakan model regresi logistik ordinal dengan variabel dependen waktu tunggu kerja (WT) diklasifikasikan menjadi tiga, yaitu cepat, sedang dan lambat. Dari analisis data diperoleh bahwa faktor yang signifikan mempengaruhi WT adalah Lama studi dengan kategori ”tidak tepat waktu”, dan Tingkat penguasaan Bahasa Inggris Alumni kategori “tinggi”, dan “sangat tinggi”.
Operator Solusi Model Fluida Termampatkan Tipe Korteweg Dengan Kondisi Batas Slip di Half-Space Kasus Koefisien ((μ + ν)/(2 κ))^2 -(1/κ) > 0, κ =μ ν , μ≠ν Suma Inna; Irma Fauziah; Muhammad Manaqib; Priska Maya Putri
Limits: Journal of Mathematics and Its Applications Vol 20, No 2 (2023)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/limits.v20i2.12954

Abstract

Artikel ini membahas model fluida termampatkan tipe Korteweg dengan kondisi batas slip di half space space ( . Model ini biasanya digunakan untuk mendeskripsikan aliran fluida dua fase di mana terdapat fase transisi pada antarmuka fase tersebut yang dikenal dengan efek kapiler. Untuk mengatasi efek kapiler tersebut, Korteweg mengembangkan model Navier-Stokes dengan menambahkan unsur kapilaritas pada persamaan Navier-Stokes. Dalam artikel ini ditunjukkan bahwa terdapat solusi pada model Navier-Stokes tipe Korteweg untuk kasus di mana koefisien  ((μ + ν)/(2 κ))^2 -(1/κ) > 0, κ =μ ν dengan μ≠ν. Kasus koefisien ini muncul berdasarkan kondisi akar persamaan karakteristik dari model yang dibahas dalam artikel ini.
Model Matematika COVID-19 dengan Vaksinasi Dua Tahap, Karantina, dan Pengobatan Mandiri Muhammad Manaqib; Mahmudi Mahmudi; Rahmawati Annisa Salsadilla
Limits: Journal of Mathematics and Its Applications Vol 20, No 3 (2023)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/limits.v20i3.14310

Abstract

Penelitian ini mengembangkan model SEIR untuk memodelkan penyebaran COVID-19 dengan menambahkan vaksinasi dua tahap, isolasi mandiri, karantina di rumah sakit, dan pengobatan mandiri. Pembentukan model diawali dengan membuat asumsi dan diagram transfer penyebaran COVID-19 dengan populasi dibagi menjadi sembilan subpopulasi yaitu subpopulasi rentan, subpopulasi vaksinasi dosis 1, subpopulasi vaksinasi dosis 2, subpopulasi laten, subpopulasi terinfeksi, subpopulasi isolasi mandiri, subpopulasi karantina di rumah sakit, subpopulasi pengobatan mandiri, dan subpopulasi removed, kemudian dibentuk sistem persamaan diferensial nonlinear. Dari analisis model diperoleh titik ekuilibrium bebas penyakit, titik ekuilibrium endemik penyakit, dan bilangan reproduksi dasar (R0). Titik ekuilibrium bebas penyakit stabil asimtotik lokal ketika R0<1. Eksistensi titik ekuilbirum endemik terdapat satu atau tiga akar positif jika R0>1 dan terdapat nol atau dua akar positif jika R0<1. Bifurkasi mundur terjadi pada kondisi R0<1 sehingga diperoleh persamaan bifurkasi mundur R0c<R0<1. Simulasi numerik untuk model yang dibuat sesuai dengan analisis yang telah dilakukan. Analisis sensitivitas diperoleh parameter yang berpengaruh signifikan pada penyebaran COVID-19 adalah tingkat kontak dengan individu terinfeksi dan tingkat perpindahan vaksinasi dosis satu.
MATHEMATICAL MODEL OF MEASLES DISEASE SPREAD WITH TWO-DOSE VACCINATION AND TREATMENT Manaqib, Muhammad; Yuliawati, Ayu Kinasih; Zulkifli, Dhea Urfina
Journal of Fundamental Mathematics and Applications (JFMA) Vol 6, No 2 (2023)
Publisher : Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jfma.v6i2.20091

Abstract

This study developed a model for the spread of measles based on the SEIR model by adding the factors of using the first dose of vaccination, the second dose of vaccination, and treatment. Making this model begins with making a compartment diagram of the spread of the disease, which consists of seven subpopulations, namely susceptible subpopulations, subpopulations that have received the first dose of vaccination, subpopulations that have received the second dose vaccination, exposed subpopulations, infected subpopulations, subpopulations that have received treatment, and subpopulations healed. After the model is formed, the disease-free equilibrium point, endemic equilibrium point, and basic reproduction number (R_0) are obtained. Analysis of the stability of the disease-for equilibrium point was locally asymptotically stable when (R_0)<1. The backward bifurcation analysis occurs when (R_C) is present and R_C<R_0. Numerical simulations of disease-free and endemic equilibrium points are carried out to provide an overview of the results analyzed with parameter values from several sources. The results of the numerical simulation are in line with the analysis carried out. From the model analysis, the disease will disappear more quickly when the level of vaccine used and individuals who carry out treatment are enlarged.
Analysis of the Achievement of Program Learning Outcomes Based on an Outcome-Based Education Curriculum Manaqib, Muhammad; Sidqi, Serin Tias; Sutanto, Taufik Edy; Elfiyanti, Gustina; Mahmudi, Mahmudi
International Journal of Innovation and Education Research Vol. 3 No. 1 (2024)
Publisher : Universitas Bengkulu

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33369/ijier.v3i1.34389

Abstract

The curriculum, a set of plans and arrangements for learning outcomes, study materials, processes, and assessments, serves as a guide for implementing study programs.  The Outcome Based Education (OBE) curriculum has been adopted at the higher education level to keep pace with rapid technological developments. Program Learning Outcomes (PLOs) are designed to articulate learning objectives into measurable and assessable statements using OBE principles. The results of PLO evaluations can be used to enhance PLO standards or quality performance and for accreditation purposes. Syarif Hidayatullah State Islamic University Jakarta has implemented the OBE curriculum in study programs in a significant stride towards international accreditation. This research, conducted using a quantitative research method, aims to analyze the achievement of the PLOs established by the Bachelor of Mathematics Study Program, Faculty of Science and Technology, Syarif Hidayatullah State Islamic University Jakarta. The research method involves measuring the achievement of PLOs by analyzing student grades and providing a comprehensive and objective assessment of the PLOs established by the Bachelor of Mathematics Program. The achievement of PLOs in the Bachelor of Mathematics  Study Program, Faculty of Science and Technology, Syarif Hidayatullah State Islamic University Jakarta, is a significant 85.11%.
Mathematics Model of COVID-19 with Two-Stage Vaccination, Symptomatic, Asymptomatic, and Quarantine Individuals Inayah, Nur; Manaqib, Muhammad; Fadillah, Muhammad Febry
CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 7, No 3 (2022): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI
Publisher : Mathematics Department, Universitas Islam Negeri Maulana Malik Ibrahim Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/ca.v7i3.15188

Abstract

This research developed a model of COVID-19 based on the SEIR model which was further developed by dividing the infected subpopulation into symptomatic and asymptomatic, adding quarantine of infected individuals and vaccination in two steps. Making this model begins with making a compartment diagram of the disease and then forming a system of differential equations. After the model is formed, the disease-free equilibrium point, endemic equilibrium point, and basic reproduction number (R0) are obtained. Analysis of the stability of the disease-free equilibrium point was locally asymptotically stable if R01 and an endemic equilibrium point existed if R01. Numerical simulation for the model that has been made is in line with the analysis. Furthermore, the sensitivity analysis obtained that the parameters that have a significant effect on the spread of COVID-19 are the rate of the first dose vaccination, the rate of contact with symptomatic or asymptomatic individuals, and the rate of quarantine of symptomatic infected individuals.
Model Matematika Penyebaran Penyakit COVID-19 dengan Vaksinasi, Isolasi Mandiri, dan Karantina Rumah Sakit Fauziah, Irma; Manaqib, Muhammad; Azizah, Maghvirotul
Jurnal Matematika Integratif Vol 20, No 2: Oktober 2024
Publisher : Department of Matematics, Universitas Padjadjaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24198/jmi.v20.n2.49640.135-148

Abstract

Penelitian ini mengembangkan model SEIR untuk memodelkan penyebaran penyakit COVID-19 dengan menambahkan faktor penggunaan vaksinasi, isolasi mandiri, dan karantina di rumah sakit. Populasi dibagi menjadi tujuh subpopulasi yaitu subpopulasi rentan, subpopulasi yang telah melakukan vaksinasi dua tahap, subpopulasi laten, subpopulasi terinfeksi, subpopulasi karantina yaitu isolasi mandiri dan karantina di rumah sakit, dan subpopulasi sembuh. Dari model matematika yang dibentuk diperoleh dua titik ekuilibrium yaitu titik ekuilibrium bebas penyakit dan titik ekuilibrium endemik dan bilangan reproduksi dasar . Titik ekuilibrium bebas penyakit stabil asimtotik lokal ketika . Simulasi numerik titik ekuilibrium bebas penyakit dilakukan untuk memberikan gambaran geometris terkait hasil yang telah dianalisis dengan nilai parameter yang diambil dari beberapa sumber. Hasil simulasi numerik sejalan dengan analisis yang dilakukan bahwa penyakit akan menghilang jika dan menetap dalam populasi jika . Dari analisis model diperoleh bahwa upaya yang dapat dilakukan agar penyakit tidak mewabah yaitu mengurangi kontak langsung dengan individu terinfeksi, selalu menjaga kebersihan, melakukan isolasi mandiri atau karantina di rumah sakit dan selalu menjaga jarak.
Product Cordial Labeling Of Scale Graph S_{1,r}\left(C_3\right) For r\geq3 Irene, Yanne; Lestari, Winda Ayu Mei; Mahmudi, Mahmudi; Manaqib, Muhammad; Elfiyanti, Gustina
Mathline : Jurnal Matematika dan Pendidikan Matematika Vol. 9 No. 4 (2024): Mathline : Jurnal Matematika dan Pendidikan Matematika
Publisher : Universitas Wiralodra

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31943/mathline.v9i4.662

Abstract

Graph theory plays a crucial role in various fields, including communication systems, computer networks, and integrated circuit design. One important aspect of this theory is product cordial labeling, which involves assigning labels to the vertices and edges of a graph in a specific way to achieve a balance. Despite extensive research, the product cordial labeling of scale graphs has not been thoroughly explored. This study aims to fill this gap by investigating whether the scale graph  can be labeled in a product cordial manner. To achieve this, we followed a three-step methodology: first, we identified the vertices and edge notations of the scale graph ; second, we assigned binary labels (0 and 1) to each vertex and edge to identify a pattern; and third, we proved that this pattern meets the criteria for product cordial labeling. Our findings reveal that the scale graph does indeed support product cordial labeling, thus confirming it as a product cordial graph. This research not only advances our understanding of graph labeling but also provides practical insights that can be applied to optimize network structures and address complex problems in science and engineering.Graph theory plays a crucial role in various fields, including communication systems, computer networks, and integrated circuit design. One important aspect of this theory is product cordial labeling, which involves assigning labels to the vertices and edges of a graph in a specific way to achieve a balance. Despite extensive research, the product cordial labeling of scale graphs has not been thoroughly explored. This study aims to fill this gap by investigating whether the scale graph  can be labeled in a product cordial manner. To achieve this, we followed a three-step methodology: first, we identified the vertices and edge notations of the scale graph ; second, we assigned binary labels (0 and 1) to each vertex and edge to identify a pattern; and third, we proved that this pattern meets the criteria for product cordial labeling. Our findings reveal that the scale graph does indeed support product cordial labeling, thus confirming it as a product cordial graph. This research not only advances our understanding of graph labeling but also provides practical insights that can be applied to optimize network structures and address complex problems in science and engineering.
MODEL MATEMATIKA PENYEBARAN PENYAKIT PULMONARY TUBERCULOSIS DENGAN PENGGUNAAN MASKER MEDIS Inayah, Nur; Manaqib, Muhammad; Fitriyati, Nina; Yupinto, Ikhwal
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 14 No 3 (2020): BAREKENG: Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (890.372 KB) | DOI: 10.30598/barekengvol14iss3pp459-472

Abstract

This research developed a model of tuberculosis disease spread using the SIR model with addition of the medical mask usage factor. First, we create a diagram of the tuberculosis disease spread compartment through contact between individuals with medical mask usage. After that, we construct a system of nonlinear differential equations based on the compartment diagram and then find the disease-free equilibrium point, the endemic equilibrium point, and the initial reproduction number . We use linearization to analyze of the disease-free equilibrium point. The disease-free equilibrium point obtained is asymptotically stable at . The simulation result shows that the value of . It means that tuberculosis disease in the future will disappear. But if we reduce the value of medical mask usage and increase the value of tuberculosis disease spread, the value . It means that tuberculosis diseases can become an outbreak.